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I. INTRODUCTION

Netwbrk transformations have been ﬁsed for many years as -.
a tool in network analysis problems. .One of the most familiér
of network reduction teqhniques»is the star-mesh traﬁéforma—
tion and a proof of this transformation by elémentary network
methods may.be_found in any basic electronics text such as |
Boast (1). A proof of this transformation will be developed
in this theéis by linear graph thepry in terms of the
incidence matrix of the graph. A star—meéh transformation
actgaily deleﬁes one incidence_set (one row of the incidence
matfix A or one node of the network)‘of the defining matrix
and the transformed graph is described by the new inéidence
matrix that is formed. Likewlse, another transformation could
logically be developed by the use of the more generalized
cut-set matrix Q ﬁhere a transformation would result in the
delefion of one éut—set.  If one row of an incidence matrix A
- 18 deleted the remaining matrix is still an incildence matrix.
Howeﬁer, if dne.row of a cut-set matrix is deleted, the
remaining rows dé not neceséarily define a cut-set matrix.
Therefore, it will be necessary to determine conditions for
the existence of a‘cut-sét matrix after the deletion of a
cut-set of edges.
. This'éutvset to mesh transformation which has been
developed for use in topological analysis might.possibly be

extended ‘to be of use in the synthesis of network problems.



TI. DEFINITIONS AND THEOREMS

LIRS

This section contains a listlof definitions and theorems
that are necessary for understanding thé'development of the
'rgmaining sections. The definitions which are well standard-
iéed and the theorems for whiqh proofs are not_givén'maj be
" found in the literature as indicated. The theorems for which
pfoofs ére given could not be found in the literature and are

believed to be original.

A, Definitions

1. A network element 1s any network component such as a

resistor, capacitor, source, ete.

2. (13) An edge or element of a graph (the former

will be used where possible so as to'distinguish
between the common usage of the word element in
matrix theory) is a line segment together wilth its
distinet endpoints.

3.. (13) Associated with each network element are two
real valued functions of bounded vafiation of the

real variable t, an element voltage and an element

current. The terms edge voltage and edge current
of a graph will also be used to denote the element
voltages and currents of the corresponding network

elements,

4, (13) An oriented edge is an edge~with orientation
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11.
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shown by an arrowhead on the edge pointing away
from the first vertex and toward.the second vertéx.
(13) A vertex is an end boint of an edgé. The word
node is sometimes used for a vertex.

(13). A linear graph is a collection of edges, no

two of which have a pointAin common that is not a
vertex. Only graphs containing a finite number of
edges will be considered.

(13) A graph in which every edge has been assigned
én orientation is a directed graph. |

(135 A subgraph is a .subset of the edges of a graph
and is therefore a graph. |

(13) A graph G is connected if there exists a path
between any two vertices of a graph. |

(13) A graph G is nonseparable-if every subgraph of

G has at least two vertices in common with its
complement., All other graphs are separable. A

graph is separable if 1t consists of two subgraphs

-that are joined at only one vertex. In this paper

a linear, dir:cted, connected, nonseparable graph
will be referred to simply as a graph G.

Two networks are equivalent networks if the voltage

and current varliables at the ports of interest are

the same for both networks. There are many patterns

L

of equivalence as shown by Reed (12)so 1t is
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necessary to define equivalénce as ébove for this
developmenf.

If two networks are equ;valent theﬁ the graphs of
these networks will be defined aé equivalent graphs.

This does not imply that the two graphS are the same.
(13) A vertex and an edge are incident with each

- other if the vertex is an endpoint of the edge.
(13) The degree of a vertex is the number of

edges incident at the vertex.

A graph G with v vertices is a complete'graph if
eaéh pair of verfices‘is connected by ah edge (a
serieé or parallel connection of edges 1s not
allowed). An eqﬁivalent statement is that the
degree of each vertex of a complete graph is v-1

and no edges are in parallel or series. A complefe

graph has Xi%:;l edges.

(13) The incidence or vertex matrix, denoted by

A, = [aiJJ, of a graph with v vertices and e edges,
is the matrix with v rows'and e columns. Each row
corresponds to a vertex, and each column corres-

ponds to an edge, such that

aiJ = 1 1f edge J is incident at node 1 and directed
away from node i,
aij =-1 i1f edge J 1s incident at node i, and

directed toward node i, and



17.

18..

19.

20.

21.

5

254 = O if edge j is not incident at node i.

.A matrix formed by femoving one row from Aa will be
labelled‘the incidence or vertex matrix A. The A
matrix'ﬁay contain at most tﬁo non-zero elements pér
column and if there are two.ron-zero elements in any
column‘fhén one element must:fe a plus one and the
other element a minus one.

(7) A maximally connected subgraph G of a graph G

is a subgraph of G or the graph itself such that the
addition of an edge in the complement of G, to G
makes the resultant subgraph no longer connected.

If G is a connected non-separable graph, the maxi-
mally connected subgraph of G is the graph itself.
(13) The rank of a graph with v vertices and p
maximal bonnecteq subgraphs is v-p. The rank of a

connected non-separable graph is the same as the

rank of A which is v-1.

(13) The nullity of a graph with e edges, v vertices,
and p maximal connected subgraphs of p = e-v+p. |
(13) A cut-set is a ‘set of edges such that: the
removal of these edges from G reduces the rank of

G by one, provided that no proper subsef of this set
reduces the rank of G by one when it 1s removed from
G. |

(13) The cut-set matrix, given by Q, = [qij],'of a
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graph with v vertices and e edges, 1s the matrix

which has one row for each cut-set of the.graph and

e columns, such that

¢

a5 = 1 if edge j 1s in cut-set i and the orienta-

tions agree,

3.

-1 if edge j is in cut-set i and the orienta-

%35 =
tions are opposite, and )
Ay =0 if the edge j is not in cut-set i.

A matrix, formed from v-1 independent rows of Q,

-will be_ labelled the cut-set matrix Q.

A complete incidence matrix is an incidence matrix

Aé of a complete graph with v vertices and e edges.
(13) A tree is a connected subgraph of a connected
graph which contains all the vertices of the graph
but does not contain any closed paths (eircuits).

(13) The fundamental system of cut-sets with respect

to é tree 1s the set of v-1 cut-sets, one for each

branch, in'which each cut-set includes exactly one

branch of the tree. The fundamental matrix therefore

contains a unit matrix as a éubmatrix.

A matrix A of order (m,n) is of maximum rank if
the rank of Aism for m <n and n for n < m.

(5) A major determinant of a matrix is any deter-

minant of maximum order of a matrix.

(5) A major determinant of the matrix A and a



7

- major determinant of the matrix B are said to be

corresponding majors of A and B only if the columns

of A used to form the majors of A have the same
~indices as QO the rows of B used to form the majors
of-B. ‘
28. (13) If the current and voltages'of§an n-terminal
network are written in the matrix form I = YV,
where the voltages are with respect tb an additionai
visolated node and the currents are directed into the

terminals, then the matrix Y is termed the indefinite

admlittance matrix of the network. The sum of the

elements in every row of Y is zero and the sum of
the elements in every column of Y is zero. Huelsman

(6) shows a proof of these conditions.

B. Theorems

Theofem.l (5). If A is a matrix of order (m,n) and B is
a matrix of order (n,m), and if m < n, then det AB is
equal to the sum of the products of the corresponding
majors of A aﬁd B.
Theorem 2 (2). If C' is the transpose of a square matrix
C then det C' = det C.

'Theorem 3. If A is a real m by n matrix (m < n) which
has rank m, then thelrank of AA' is aléo m, so that AA'
is a non-singular, symmetric matrix of order m with

positive diagonal elements.



Proof. To prove the theorem, let us apply the Binet-
Cauchy Theorem (Theorem 1) and write the det AA' as the sum
of the products of the corresponding majors, My of A and Mj

of A'. This result may be written as
a
det (81) = 5B Mgty @)
~ where a ='(£) (n columns, m at a time).
By Theorem 2, M, = M3 so Equation 1 may be written as

’ (04
det (AA') = T (M,)2 (2)

=1 ¢
where all terms are non-negative and since A has rank m there

must be at least one MJ of order m that is non zero so det
(AA') # 0, which proves that AA' is non-singular. |
To prove that AA' is symmetric let

B = AA! | | (3)
and show that B = B'. Take the transpose of both sides of
Eqﬁation 3 and using the fact that (A')' = A we get

B! = (AA')! = AAY | ()
which proves that AA' is symmetric. For a matfix A with real
eiements, each main diagonal element of AA' in the 1l position
is the sum 6f the squares of all n elements in the ith ToW of
A, hence non-negative. The matrix A may not contain a row of
zeroes since it has Tank m so all diagonal elements of AA!

must be positive.



ITI. NETWORK TRANSFORMATIONS

-

A. Derivation of the Star-Mesh Transformation
For any electrical network N with corresponding graph G
consisting of e edges:and v vertices, Kirchhoff's current law
may be written'(lé) as |
ai(t) =0 IR NG
or | .
| ai(s) =0 | - (6)
where A and Q are the incidence and cut-set matrices reSpec—
tively that were previously defined and

1 (t)
(’c)
(7)

i_(t)

- -

where i (t) is the current associated with edge k.
Let us assume that all edges of the graph represent

_ resistive elements of the network and that each current source
jk(t) has a shunt admittance y, and the two network'elements

wili be represented by one edge k with the reference convention
as shown in Figure 1. Either y,_ or jk(t) may be zero. For
convenience, let us assume that all voltage generators'have a
series impedance and wil; be transformed into an equivalent
network as shown in Figure 1. This 1s not a restriction since.

a voltage source wlith no series impedance could easily be
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ik(i) S LU
—, , : ?___;m_
o , Y,
-\

+ - -

g<— Vk(t) s qu(f) """t
(2) Networkvélement k

. k
o— > —e
a b

(b) Edge k

Figure 1. Curren‘b'and voltage convention for an edge k
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handled by the Blakesley E-shift as described by Réed (11).
All parallel network elements-wili be combined and considered

as one edge.

Letting capital letters correspond to Laplace-transformed "

quantities, the edge currents méy be expressed aé

I=YW-J ° : : : (8)
where the edge voltages are -
-V ] - *
1 e
V2
V = : ) . . ' (9)
.Ve—

Y is the diagonél admittance matrix of e diagonal elements,

and the current sources are

] o | (10)

The edge voltages V are related (13)4to:the node voltages
(also called node-datum voltages) v, by

V=A'V, (11)
where
Vi
Veal | |
Vn‘: . r) p = V_l’ cL (12)
Y od
L P9
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A' is the transpose of A, and V.4 1s the voltage of node k
with respect to the reference or'datum hbde d;. If Equation
11 is substituted into Equation 8 and the result muitiplied
by A,~then ‘ |

AT = AYA'V,-AT . (3)
ana siﬁée AT = O from Equation 5 we get 3
“ AT = AYA'V . | (1)
The left side of Equation 14 is a column matrix of SOurcé‘
currents associated with each vertex or node and will be
‘called the node currents I, so Equation 14 may be written as -

I, = AvA'V . (15)

Equation 15 can be written in partitioned form as

[}
| Ixn A, ! vxn ,
=8 = |o---f ¥ jAl tar)i--B (16)
0 A ' v Y v '
y ! In

where Ay represents,thosé vertices that are not incident to
Wa source’edge (edge representing .a source as illustrated in.
- Figure 1), V&n represents th¢ correSpéhding hodeAvoltages;
and AX represents the remaining incidence sets of A with

corresponding node currents Ix and node voltages Vi .

n n
Equatior. 16 may be arranged as
I ' v
x|  |ALYA! 1A YAr| ['x o
—-g = _§__§_:_§__¥ __Q ’ . (17)
0 AyYA' tA YA! v : ‘
[]

x 1 0yyl |y

or in terms of two ‘equations
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Ixn __AXYAxVxn + A YAyV S (18)
and

O—AYA'\T +%,YA'V . . (19)

As will be shown later, AyYA& is non-Singuiar and Equation 19

may be solved.for Vy and this result substituted into Equation
- B ¢! '
18 to yield

I, = A [Y-YA!(A_YA!) AYA'V )
x <L T-YAS(ASYAL )™ A Y] APEE (20)

Let ué now apply this equation to a network N with a
star subnetwork as shown in Figure 2 where none of the‘edges
of the star contain sources.

If we now form the incidence matrix .for the graph of

'Figure 2, the result is

s+2 [
s+3

- e e . o o — — = — o nn o ——— ———— —— —— — — —

.(21).

s+1L A, .

Since the edges 14'2; «s.5 S are incidentvonly to the
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§.~~..
v .

reference
vertex

Figure 2. Star network imbedded in a network N with s
admittances incident to vertex s+l
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vertices 1, 2, ..., s+l, then (Ax)ll = 0 and with orienta-
tions as shown in Figure 2 the submatrix (Ax)Zl becomes a
negative unit mafrix and the submatrix Ay contains plus ones
in the first s columns followed by zeroes in the remaining
columns of A.

The diagonal element admittance matrix of the network is

Y l ]
1 | '
..I.,. l
YS |
Y= f———— H———— (22)
- ' Y
[ s+l
| Ys+2
O I ..‘....
Y
. | ¢ ]
and the term
s
AYA! = T Y, = XY : 23)
v oy j_=l<i 1 _ | (3/
which is certainly not zero so its inverse exists and s
2 b
Y1 Y1Y2 Y1Y3 oo YlYS:
-1,  _ 1 2
YA&(AyYA§) AjY --EYI Y. ¥, Y Y ¥ 35 Y2Ys| 0. (24)
- [ L[] . . o . . . ] - L[] ‘
2
YsY1 YSY2 YSY3 oo Ys |
_____ 6--—-—--1-0-
L. /’//M‘ : ) | J

‘Let the bracketed term of Equation 20 be called Yy for
simplicity such that

-1
—_ X H 1 253



and the result 1is

16

(~ S

(T, % Y) oo
1,200 YY)

LY, £Y, .

S
-Yo¥y Yp(¥p+ 523 Y )
T Y, T Y,

vy = “Ys¥y “Ys¥o
¥y T Y, Y,
0

The congruence of Yy may be formed as

Yy = H YdH'

-Y.Y |
Y

(27)

where Y; is a diagonal matrix of (Z) + e-s elements, where

the s edges incident to vertex s+l have been replaced by (S)'

(s things taken 2 at a time) transformed edges and the remain-

ing edges not incident to vertex s+l are the same. The

(;) transformed edges are the combinatlions of the products

of s admittances taken two at a time divided by the sum of

the s admlttances. ThebnegatiVe of these terms are those

terms below the major diagonal of Y& in Equation 26 and

are arranged as
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~12... 18 23... 2s... ps s+l s+2...e
12| Y12

1s 'y
23

1s 0]
Yoz

2s | 0

RS

(28)

s+1
s+2

v, =12 | (29)

and likewise for the other dliagonal elements of Yd'

The matrix H may be partitioned as

| . .
H = _.1-;]:__.':.___9 ' (30)
| A

where H,, may be written as
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12 13 . . .1s 23 . . .28 34, . . js .« o« . Bs.

(- . .
1 1 1111 1
2| -1 1111 1
3 -1 -1 1111 1
" H11= . L] . - - L - L] . .
S -1 : -1 . -1 -1
(31)

where only the non-zero terms have been shown. The columns
are numbéred to‘correSpond'to the double subscript notation
appearing 1n'(Yd)11. '

| The matrix H may be formed by placing, in any column

11
be (b < ¢), a plus one in row b and a minus one in row c.
Therefore, H11 becomes a complete incidence matrix.

‘Equation 20 may now be-written as

Ixn = A HY, H'A'vxn : . o (32)
.or )
Ixn = (AXH)Yd(AXH)'Vxn (33)

since (AXH)} = H'Al.

Equation 33 has the same form as Equation 15. .Therefore,
if AXH is an incidence matrix then there is a'correSpondiﬁg'
graph G3 with v-1 veftices and e+(g)—s edges which 1is
equivalent to the original graph G. The rank of G is v-1
and the nullity of G is p = e-v+l. | The rank of G3 is v-2
| and its nullity is Mg = e+(2) -s-(v-1)+1. Therefore, in thé
.equivalent graph the rank has been reduced by one and the
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nullity has béen increased ﬂy (Z)—sfl. When s =3 the rank
" has been reduced by oné and the nullity has been increased.
by one.v For s > 3, the nullity has increased by,é greatef
amount than the rank has decreased; ”

Ir AXH is written in partitioned form as

: i " .l ' .
P e Y B e O IR N T2 T3 IO
Ay | _ ' T 5 -

then it is obvious that since -H11 is an incidenceimatrix and
the remaining columns are the same asithe e-s columns of A,

AxH is also an incidence matrix. ,Therefore AXH describes an
equlvalent network where vertex s+l has been deleted and
network elements 1, 2, ..., S havé been replaced by trans-
formed elements connected between each pair of vertices 1,

2, ..., 5. The element admittance matrix for the equivalent
network is given by Equation 28. This completes the

deri#ation bf the star-mesh transformation which is illustrated

‘in Figure 3.

B. Derivation of a Cut-Set to Mesh Transformation

This development will follow the pattern of the previous
development except the cut-set matrix Q will be used to
define the graph rather than the incidence matrix A. This
is more general since an incidence set is also a cut—seﬁ
but the converse is'not true. ,

The edge voltages V are related to the cut-set voltage -

varlables Vq as
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reference
vertex

Figure 3. Mesh network, equivalent to star network of
Figure 2 v
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V=@ v, - - (35)
where »r -
ti | |
Vq = Vq,2 - s p=v-1, ' (36)
qu
S ‘
and qu is the voltage variable of cut-set k. If Equation 35
is now substituted into Equation 8 and the result multiplied '
by Q, then .
ar = QU - | (37)

and since QI = 0, the result is
QJ = QYQ'Vq . ' ‘ (38)

The left side of Equation 38 is a column matrix of source

currents assoclated with each cut-set of the network and will

be labelled Iq, so Equation 38 may be written as

Iy = @V, . - | - - (39)

Equation 39 may be partitioned such that

I ' Vv ' -
s v e w
ol |&) T,

where Q represents cut-sets which do not contain sources and

Vy represents the corrésponding‘cut-set voltages. The
q , :
" submatrix QX is the remaining cut-sets of Q with Ix and
: ‘ q
Vx representing the corresponding cut-set currents and

d
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remaining cut-set voltages. Using:the same'procedure as was

used to derive Equation 20, we get.as an equivalent equation,
~ 4 ' 1 ' o
‘qu = Q. [y - YQ&(QYYQ,;,) QyY]Q,}'CVXq . (41)
If a network may be realized that is described by
Equation 41 then we have found a'transformation as in Section
A but instead of replacing a star by a mesh we will replace
a cut-set by a mesh. The first case to be investigated will
be a transformation physically realizable with passive '

network elements (i.e., positive-valued elements).

1. Transformations physically realizable with passive

admittances

Now consider a graph G of v vertices and e edges as
illustrated:in Figure 4 which is divi&ed into two subgraphs
Gl and G2, connected by the cut-set C = Cy1s Co» ;.;, Cq
which contains no sources. Let W, be the ve{ﬁices of G1
where 1 of these vertices are incident to theledges of C and
u, be the vertices of G2 where k ef these vertices are incident.
to the edges of C. The remaining e-s'edges are indicated by ﬂ
the dotted lines. We will choose v-2 cut?sets which willl be
n-1 iIncidence sets of Gy and m-1 incidence sets of G2 and
for ¢onvenience let the two vertices that are'deleteg from’Aé
be Wy and u, (one reference vertex on each side ef C,
ineident to an edge or edges of C). Then since

€

n+m=v , (42)
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one additional cut-set will be needed to obtain v-1 indepen-
dent cut-sets. Choose C to be this additional cut-set with
edge orlentations as shown in Figure 4 and form Q such that
it may be partitioned as

Cq; Ch « « o+ C e-s edges not in C
1 72 - : e

()11 (Qx_)lz

. (43)

. (&) (9) 0

e —— — e —— —— — —— - — . — — ommems  p— —— —

A1l elements of (Qx)11 are zero since the: vertices w; ., wi+2;4

s ey whzand Weiqs Upgns ooes Uy are not incident to the edges



ol

\ 7
: '/
| 7/ \\
. / ~
uz ,)“k-c-z
4 S e

>

Figure 4. Connected non-separable graph G of v vertices
and e edges, with subgraphsGl and G2 connected

by the edges of the cut-set C
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of cut-set C. LikeWiSe, the non-zero elements of rows Wy
through Wi q of (Qx)2i are positive since each edge of C is
oriented away from these vertices and the non-zero elements
of rows u, through w, _, of (QX)21 are negative sincé each
edge of C is oriented toward these vertices.
Since A.y and Qy are identical, the term of Equation 41
in the brackets is equal to Y&.of Equation 27 fe) Eduation 41

may'be written as

qu =<QXHYd(QXH)'V#q . . (44

It is now necoséary to determine when QuH is a cut-set matrix.
Since (13) |

Q = Da, - (45)
where D is a non—singulé£ transformation; then if QH is an

incidence matrix it is also a cut-set matrix.

If QxH is written in partitioned form as

l .
e | T (s)

s
I
\
1
1
l
!
]
!
[
1
]

—— el —

and since the e-s columns (e-s edges not in cut-set C) of
QxH are the same as the corresponding columns of Qx, then if

the matrix (QX) is (is not) an incidence matrix then

21t
QXH 1s (is' not) an incidence matrix.

With these elementary remarks, the following theorem may
be stated.

Theorem 4. The matrix QH is an ineidence matrix if
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and only if the submatrix (Qx)21 does not contain an S
submatrix where
11 o . . |
S = . . . (47)
o -17¢
Proof: The sufficiency of the above theorem may be
shown by assuming thatleH is not an incidence matrix and
‘proving that (Qx)21 contains at least one S submatrix. If
Qx)Ql 17 is not an incidence matrix, then there is at least
one column ab (the double subscript notafion refers to the
column designations given to H;; in Equation 31) of (Qx)elHll
that contains at least two plus ones or two minus ones in
two rows ¢ and d of (Qx)lell‘ Each row of (QX)21H11 reprgsents
the sum or minus the sum of n rows of H11 where n is the
number of non-zero terms in the corresponding row of (Qx)21
FPor a plus one to appear in any row of (Qx)Zl 11 there must
be at most s-1 non-zero terms in -the corresponding row of
(Qx)zl' If there are s non-zero terms in any row of (QX)21
then the corresponding row of (Q_)21 17 Will be a row .of
zZeroes since H11 is a complete incidence matrix. In column

ab of H a plus one appears in row a and a minus one appears

11
in row b for a < b. For a plus (or minus) one to appear in

row ¢ column ab of (Qx)QlHll’ there must be in row c of
-(Qx)21 a plus (minus) one in column a or a minus (plus) one
in column b but not both. For a plus (or minus) one to appear

in row d column ab of (Qx)2l 11 there must be in row d of
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(Qx)21 a plus (minus) one in column a or a minus (plus) one
in column b, but nof»both. Since (Qx)21 is an incidence set,
column ab may not have a plus (or minus) one in both row c
and d. Therefore, an S submatrix exists in (Qx)él.

For the other part of the proof, assume that an S
submatrix appears in rows ¢ and d and columns a and b of
(Qx)21° Since H;, 1s a complete incidehce matrix With (;)
independent columns, there are two rows a and b of Hil which
have two non-zerb elements in column ab, one element being a
plus one and the other element being a minus one.. Theréfore,
in column ab of (Qx)elﬁll two plus ones or two minus ones will
appear.in rows ¢ and d. Hence (QX)ElHll'or likewise QH is
not an incidence matrix. This completes the probf of the
theorem.

In terms of the edges of C, no tfansformation will exist
if one edge of C, say P is incident to vertex W, of Gl
but not incident to verfex Uy, of G2 and another edge ¢y is
incident to U, but not w,. ;ﬁeither of the yertices u,
and w, may be the referénce vertices that were chosen.

As an'example, let us choose the'network N composed of
. networks Nl and N2 connected by edges one through four as is
illustrated in Figure 5a. With Wy and u3 chosen as the

reference nodes, (Qx)21 may be written as,
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- ‘2
- (2) Network N
Yi4

Wi -~ \AA U

Y24 o

| >o U2
N, w,e Yz 1 oy N
2 node w, and ug 3 2

identified
(b) Network Ny
Figure 5. A network N and its equivalent transformed

-network N3 .
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1 2 3 4
Wl 1 .l 1 0
p _ u, (-1 0 0] 0
(Qx)21 = 1 (48)
| u, 0 -1 0 Q
"and since (Qx)gl does not contain an S submatrix then
QXH is an incidénce matrix.
The product (Qx)ElHll now becomes
' 12, 13 14 23 24 34
Wl 0] 0 1 0] 1 1
: _ou |{-1 -1 -1 0 0 0 '
(Q)pqyy = "1 o (49)
u2 1 0 0 -1 -1 0
! i

and the ﬁetwork of the transformed graph represented by the
ineidence matrix of Equation 49 is illustrated in Figure 5b.
The admittances le, Y13, ete. in Figure 5b are

Y. Y Y1Y3

P - v -
- , -
12 Y1+Y2+Y3+Y4 : _ 13 Y1+Y2+Y3+Y4

(50)

and likewise for the other edges.

Some other transformations are 1llustrated in Figure 6.

It 1s common knowledge that 1f two 2-terminal networks N,

and N, with terminals 1 and 2 are connected at terminals 1

2

by Yl and at terminals 2 by Y2, then an equivalent network
, Y. Y - ,

is one with admittance 12 between terminals number 1 of
: Y1+ Y2 ,

both networks and the number 2 terminals shorted together.

This equivalent network is shown in Pigure 6a. This method
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' EQUIVALENT
NETWORK |[TRANSFORMED . NETWORK
a W, 0————\/\}\/‘_-“—-."( - le . :
| | W e VAN —o Y,
Ya. ) . ‘
b
c
d
e

Figure 6. Networks and their equivalent‘s
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presents a proof of this rather obvious transformation. The
equivalent networks of Figﬁre 6c and 64 are networks where
hetwork N1 contains only one vertex w-. These transformations°
are the familiar star-mesh transformations which were

] derived previously. . If the network is separable at vertex wy
then Nl_may conpain vertices other than Wy and the star—mesh
transformation may still‘be used after the netwofk is |
separated.

Theorem 4 gives the necessary and sufficient conditions
for QXH to be an incidence matrix in terms of the edges of
the cut-set involved; It was originally believed that the
conditions, for QH to be a cut-set matrix, could be determined
solely by the edges ofIC, independent of the remainder of the
graph, but such is not the case. This will not be pursued
further since Gould (3), Tutte (15), Lofgren (8), and
Mayeda'(9) have presented methods for determining whether a
matrix is a cthset matrix of a‘nonoriented graph and recently
Mayeda (10) has modified his meﬁhod to include the necessary
and sufficient conditions for a matrix to be a fundamental
cut-set matrix of an ofiented graph.

A ﬁbre general approach will now be taken where the
congruence of Yy will not be formed and it will become
necessary to determine when a general Qx (not néﬁessarily
restricted to incidence sets as was ‘done in Section ITIB1)

is still a cut-set matrix.
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2. Transformations hypothetically realizable with mutual

admittances

A cut-set to mesh transformation hypothetically realiz-
able with mutual coupling between edges can be found for a
more genefal class of networks than ﬁhose already discussed.

For this derivation, the bracketed term of Equation 41
labelled Yy will not be reduced to a diagonal admittance
matrix as was done previously. The admittance matrix Yy
will be hypothetically realized with self admittances repre-
sented by the diagonal terms and mutual admittances repre-
sented by the off diagonal terms and with a configuration
corresponding to. the graph of the cut-set matrix Qx’ It now
becﬁmes necessary to find the conditions under whigh Qx is
a cut-set matrix.

If Equation 11 is equated to Equatioﬁ 35 as
Vg = AV, ; (51)

4

and if the tmanspose of Q from Equation 45 is substituted
into Equation 51, the result is
= A! ' N o “
A'D'V, = A'V. | (52)

In general, we cannot assume by the conditions of

Equation 52 that D'V_ = Vn but, since A satisfies the

q
conditions of Theorem 3, both sides of Equation 52 may be

multiplied by (AA')"1A. Using the result that (AA') T(aA')
= U we get

V, = D'V,. , ; ‘(53)_
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This now leads us to the following theorem.

Theorem 5. Given a. graph ﬁiﬁhbv vertices and a cut-seﬁ
matrix Q, if any 1 number of cut-sets (rows) Qi |
(O < i < v-1) are deleted from Q, then the remalning
(v-1)-1 rows form a cut-set matrix Q_; if the voltage

variables of the i cut-sets V are a linear independent

9

combination of i node-datum voltage variables Vid'
Proof: ‘"Assume that the i node-datum voltage variables

Vid are related to the 1 cut-set voltages Vq as
' i

= t
Viq = Doo vqi (54)
22' is non-singular. It is then possible to write

Equation 53 in partitioned form thus:

where D

r - r ] - - =
v | A
1d | q1
|
> i T |
. = D..t' I D ¢ . 55)
: 11 ., ~21 : (55)
: [ \
Vad | | PR “q,
|
Vid 0 | D22‘ Vq
) | *
. L I J - J

where o = p-1 = v-1-i. Since D! is non-Singulér and has rank

v-1, the D ,' must be non-singular. Equation 45 may now be
written in partitioned form as
) |
Q D,. | O A -
R e B e (56)
Y {P21 | Paz A4
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where Ai is a matrix formed from i rows of A and A;i is the
matfix A with i rows deleted. Therefore,

Q; =Dj A, | - - - (57)

and,‘since»A_i_is én incidence matrix and Dll is non—sihgular,
QLi is a cut-set matrix. This completes the proof which

gives the sufficient condifions for Q_4 tovbe a cut-set matrix
and hence the existence 05 a cut-set to mesh transformatiqn.

As a special case of the above theorem for i = 1 (ohe
row deleted), Q ; is a cut-set matrix‘if ti is a node-pair
voltage (a voltage between a pair of nodes). For this casé
the ﬁerm hode-pair voltage may be more appropriate.

Thé conditions of Theorem 5 are not necessary conditions
for Q_ ; to be a cut-set matrix as is illustrated by the
foliowing example. _

Given the graph of Figure 7 with v-1 independent cut-

sets shown as dotted lines, then Q becomes

1 2 3 45 6 7 8 9
111 0 1 0 0 1-1 1 O
210-1 0 0.0 0 O0-1 1

Q= 3|0 0 1.0-1 0-1 1.0 . (58)
410 0 0-1-1-1 0 0 ©
510 0 0 0 0-1 1-1 1

If the incidence matrix is chosen as the incidence sets for
vertices 1, 2, 3, 4 and 5‘(vertex 6 is chosen as the

reference vertex) then
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¢ 6

G G G GRS @S D e GEd TR e

Graph with cut-sets shown as dotted lines

Figure 7.
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1 2 3 4 5 6 7 8 9
1112 o 0 01 12 0 0 O
21 0-1 0 0 0 O O0-1 1
A = 30 001 0-1 0-1 1 O (59)
Li-1 0 0 1 0 O O O ©
5]0 0-1-1 0 0 0 0O -1
and the non-singular transformation D relating Q and A
(Q = DA) becomes
1 2 3 4 5_
(1 0 1 o: 0
3 0 1 0 olo
D=10.01 o010 ~ (60)
-1 0 0-110 ‘
- - ——— — +__
-1 0 -1 -1}-1
and - , -
1 0 0-1-1
O 1 0 0 O |
D'=(1 0 1 0 -1 . (61)
0O 0 O0-1-1
0 0 0 0 -1

.

If we substitute Equation 61 into Equation 53 and solve

for V.. the results are

q

and
V., =
%5
Therefore, the

Vig = Vug = Viyo (62a)
Vg9 (62p)
Voo = Vgg - (62)

voltage variables of ql,'qg, Qs and q5 are

node-pair voltage variables but the véltage variable of

cut-set 3 1s a combination of node-pair voltages.
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To demonstrate the use of Theorém 5, let us delete row

5 from Q and the result is

1 2 3 4 5 6 7 8 9
1l/12 01 0 0 1-1 1 0 .
Qg = 2{0-1 0 0 0 0 O0-1 1f , (63)
_, 3{00 01 0-1 0-1 1 O .
410 0 0-1-1-1 0 0 O

which is a cut-set matrix since, from the partitionéd form of

Equation 60, °

A (64)

-5

HOOK
OOHO N
OHORF W
HOOO &~

where A_5 i1s the A matrix of Equation 59 with row and column '
ordering preserved and row 5 deleted. The graph represented.
by Equation 63 is illustrated in Figure 8, where the edges
shown by heavy liﬁes fepresent those edges that have been
transformed (values changed) and are mutually coupled. The
voltage variable of cut-set 5 was the voltage V65 as given by'
Equation 62e, so these two vertices are identified or
coalesced. If an edge had been present between these
vertices then a self loop would be present at these vertices
in the graph of Figure 8. The element admittance matrix with
off diagonal terms may be visualiéed by mutual admittance

but it may be impossible to physically realize (build) such

a network. However, this does not prevent us from using this
method to reduce a netwofk for analysis purposes, “

The other cut-sets whose voltage variables are node—datum
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'Figure 8. Transformed graph of Figure 7 with cut-set 5
‘ deleted : - ' '
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voltage.variaﬁles may be deleted py proper arrangement and
partitioning 6f an.appropriate non-singular ‘transformation
since the form of D depends upon the reference node chosen.
However, even though the voltagé of cut-set 3 is nof'a node-
datum vdltagé, Q;3 is a cut—set matrix since a non—sihgglar‘

»

transformation and an incidence matrix may be found as

1 0 0 O 1 01 0 0 1-1 1 O
Q. = 0 1 0 O 0-1 0 0 0 0 0-1 1 (65)
-3 0O 0 1 O 0 0 0-1-1-1 O O O}-

O 1 1 1 0 1 0 1 1 01 0 O

The graph of Equation 65 has no»apparent connection with the
original graph of Figure 7. This shows that if a cut-set
voltage variable V is not a node-pair voltage variable,
then the matrix for;ed by'deleting row i from Q may be a cut-
éet matrix., This is a counterexample which proves that the
sufficient conditions bf Theorem 5 are not necessary for

Q;i to be a cut-set matrix.

The problem of determining whether a cut-set voltage
variable is a node-pair voltage may be solved by writing a
set of equations such as those given in Equation 62 (after
first determining (D')'l) or a much easier method is con-
tained in the interpretation of Theorem 6 which fqllows.

Theorem 6. Given a’complete graph of v vertices with a

set of v-1 independent cut‘sets, then the voltage

variable of cut-set i is the same as the voltage vari-

able of edge J or the negative of the voltage variable

of edge j, i1f and only if any edge J appears in only
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_ one cﬁt—set i.
. Proof:. Assume edge j appears in only one cut-set i, then
Q contains a column j'with only one non-zero element in row
Qi' Therefore, by Equation 35

Vj = * Véi _ (66)

which completes the.proof of the sufficiency of the theorém.
For the other part of the theorem, assume that the voitage of
edge j is related to the voltage of cut-set i by Equation 66.
This can be true if rbw j.of Q' has a i'l in column i and
zerces in the other v-2 columns or if the combinations of the
other cut-set volfages present in row j of Q'Vq are zero.

Let us assume that the last mentioned case is true and the
result is

V., +kV, + ... +kV £V (67)
1 7q; 729, aq, Y

Vj = k

where K1, Ky, ..., k  are elements of row j of Q' and a = v-2.

Since we must satisfy Equation 66 we get

KV + %V, +...+kV, =0, o (68)

1q; © "2'q, q,

but since the voltage variables‘of the cut—éet Vq form an
independent set of voltages, this can dnly be true if all the
Scalars k of Equation 68 are zero. Since the scalars k are
the elements of row j of Q' and all are‘zero except the
coefficient of Vdi, then column j of Q must have oniy one
non-zero element in row i. This completes the proof.

As an inyrodﬁction to the next theorem let us define
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the cut-set matrix Q as being a set of v-1 independent cut-
sets of the graph G with v vertices and e edges and.the cuf—A
set matrix Qc as the matrix Q augmented by the columns
cqrreSppnding,tb the fictitious edges of the c§mp1ete graph
G,. We may now state the following thedrem.
Theorem 7. Given a graph G and its cut—set‘matrix.Q we
méy form G, and Q, (as described previously). If any
edge or fictitiousvedge of Gc appears in oniy‘one cut-
set, then this cut-set may be removed from Q and the
remaining rows of Q will still be a cut-set matrix.
- Proof: Assume edge J of Gc éppears in only cut-set i,
then by Theorem 6 the voltage variable of cut-set i of Gc
is the same as the voltage variable of edge j or the negative
of the voltagé variable of edge j.' Since'the cut-set
voltage variables of G are the same as those of Gc then by
Theorem 5 it is obvious that Q with row i deleted is a cut-set
matrix. This completes the proof. - |

An example showlng that these conditions are not necessary

is given in Section III B.

a. Relationship between node-pair and cut-set voltage-
variables Theorem SAhay'be used for a graph that is not
complete by assuming fictitious edges to make the graph
complete. There will be a total number of 211%;1 edges of
the graph since it was assumed that all parallel edges would

be combined into one edge. In the complete graph all node-pair
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vbltages are edge voltages silince there is ah edge or
fictitious edge between each pair of nodes. This provides us
with an easy method of determining all cut-set voltage vari-
ables which are node-pair voltages by merely eiamining the

graph with its v-1 indépendent cut-sets or the cut-set matrix

Q-

The edge voltages V of G are related to the cut-set
véltage variables Vg by Equation 35 (V = Q'Vq) and if

Equation 35 is solved for Vq the result is

v, = (@)l | o (69)
It Q,c is used in Equation 69'then the edge voltages are the
voltages of the edges of Gc rather than the edges of G. It
- is usually easier to solve for.the cut-set voltages by other
methods since more time is involved in solving for-(QQ')_lQ.
These methods will be discussed next. . |

By proper arrangement of columns, any cutfsetfmatrix may

be transformed into a fundamental cut¥set matrix Qf by pre-
multiplication by a sultable non-singular matrix E of order
v-1 so | . |

Q= EQ - | (70)
where '

'
| Q.f = [U ‘Qfl’a’]. | | (71)

If Equation 7O and 71 are substituted into Equation 35 the

result ig ' . -
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-1y, ' _
LB (72)

12

v : |
11 .
e B el | (73)
Vo1 Qe '(EL) @
where Vll represents the edge voltages of v-1 edges forming
a tree of G and V21 represents the edge voltages of the
remaining e - (v-1) edges. |

- we get

If Equation 73 is solved for Vq

V., = E'V (74)

q 11
which shows that the v-1 cut-set voitagés are related to v-1
edge voltages by E'. This provides a much easier method of
solving for the cut-set voltages since E! is relatively easy
to form. As shown by Equation 70, E represents those row .
operations which will transform the first v-1 columns (after

rearranging column ordering if necessary) of Q into a unit

matrix as . _

RQ, =U. (75)
‘Also , o

E'Ql, = U | ' | (76)
or . ,

QilE' ; U . | ',(77)

and for E! we’get

Bt = () . | R (78)
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This method of solving for E'vréquires us to identify é tree
in order to form the columns of Q, from Q. As the rank of G
increases, the labor involved in finding E' may not be ‘
justified and Equation 69 may be-a more direct method of
solving for the cut-set voltage variables.

Another way of.solving for the cut-set voltage variables
results from premultiplying Equation 35 by a matrix N (not
necessarily non-singular) as ' '

such that in any row of NQ' a single plus one appears in
‘column i (and zeroes in the other columné) of NQ'. Thus, the
voltage-variable of cut-set i has been determined in terms of
a combinatidn df edge voltages. Thefefore, if we can combine
rows of Q' such that a single plus one appears inhéolumn i
and zeroes appear in the other columns of the combinatioh

then we have found Vq in terms of the voltages of the edges

or rows of Q' that We%e combined. Equivalently, if can
combine columns of Q such that a singlevpius one appears in
row 1 and zeroes appear in the other rows of the combination
then we ha#e found ti in terms of thé voltages of the edges
or columns of Q that were combined. This method has an
advantage over the method given by Equation 74 since we do
not need to choose a tree of G; By Theorem 6.we'khow thatua
- cut-set may be deleted from Q with the remaining'rows of Q

still formiﬁg a cut-set métrix if the voltége variable of that
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cut-set 1s a node-pair voltage. Therefore, by the above
method we can determine the voltage variable ;f any cut—set.
without completely solving for N of Equation T79. ‘However,
the cut-set voltagé variable may be a combination of voltages
- of a;set of.edges which is not minimal. The edges of a.
circuit may be included as a subset and hence this subset
éf voltages will sum to zero.by Kirchhoff‘s Voltage Law.
It may be possible to use this scheme to devise an algorithm
whereby a minimal set‘of edges are chosen such that wé’could'
find the edges of a tree for any given cut-set matrix but
this will not be explored. o

As an example let us use the graph of Figure 7 with a
cut-set matfix given by Equation'58. Let us choose edges 1,
2, and 4 since they have a single 1 per column and columns 3
and 6 to complete our first v-1 columns of Q. The reason for
not choosing edge 5 is appafent since the first 5 columns of
Q do not have rank 5 (a row of zeroes is present). Equi-
valently, we note that edges 1 through 5 do not form a tree
of the graph shown in Figure 7. The matrix E' 1s easily
formed for this cholce as |

E! (80)

HOOOO

, i
1
HOMH Ok
oOoOoOrO
oor oo

0o
0
0
-1
1
E

_and when substituted into Equation T4 the result is
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Figure 9;
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which again agrees with Equation 81. However E!' of Equation
83 is more'difficalt to form than E' of Equation 80.

As one final example let us>find'the_cut—set voltage ‘
variables of Figure 10 by using Equation 79. The cut-set ‘
matrix is~given-in Equation 90. If we add cblumn 1 and
column 5 and divide by two’we get a single one ‘in row 1 of

this combination so

, V, +V
R S | ‘
vy =2 | (85)

and i1f we subtract column 5 from column 1 and divide by two
we get a single one in row 3 of this combination so

: v, -V
_ 1 5
Vq3 = =2 . | (86)

We also notice that column 7 contains a single minus one in

row 4 so

- v (87)

V -
Sy T
To find‘Vq let us choose column 4 (any column with a non-zero

2
element in row 2 would be all right) and write an equation as

and when Equations 86 and 87 are substituted into Equation 88
we- get ' , | ’

A Vs K ,
qu = - —2-' - Vq_ + -§—' - V7 . . (89)

- This section merely points out some of the short-cuts

~

whichbmay be used to determine the cut-set voltage variables

in terms of the edge voltages. The one point to remember is
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Figure 10. Directed graph with four independent
cut-sets _ L
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‘that we have e equations (columns or edges) and v-1 (v-1 < e)
unknowne-(rOWS'or eut-sets) so as in‘any system of equatiohs
there may be some sets of equations which yield a solution

with less effort than another set.

.p. Cut-set matrices of non-oriented graphs This
section will be devoted to several examples to show that if

we cﬁange all minus ones of Q to plﬁs ones then Q may not be
proper for the non—oriented graph. -Likewlse, Q may not be a
.cut—set matrix of a directed graph but if all minus ones of

Q afe'replaced by plus.ones then Q may be a cut-set matrix of

a non-oriented graph.

As established By Seshu and Reed (13), a sét of cut-sets
that are independent over the real field may not‘be independent
over the field mod 2 Qhen orientations are removed. |

As an example iet us consider the directed graph of

Figure 10 with four independent cut-sets as illustrated. If

we form Q, the result is

(90)

dHOHH
OF MO
oo HW
WU
OrOHW
‘—‘O}L‘HO\
HO OO~
oOHHO®

FwnpH

and since edge 7 appears in only cut-set four, cut-set four
may be deleted and the‘remaining TOWS QL4 still form a cut-
set matrix descfibing the grapﬁ illustrated in Pigure 11.
However, 1f we repiace all minus ones by plus dnes in QQM

we get fqr the corresbonding mod 2 matrix of the non-oriented

graph, -
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Figure 1l. Graph of Figure 10 with cut-set four
deleted

AN



Figure 12. Directed graph with four different
Independent cut-sets
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- Figure 13. Non-oriented graph des'cribed by Equation 94
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From Equation 40
g, = (4" 1QyYQ'V » : - (%6)
and when Equatlon 96 is substituted into Equation 95 the edge’
currents are _' | ‘.
- [g - ¥Q (QjYQ§)’1QyY]Q§ vxq- J. (97) "
The edge currents Ia after the ftransformation are given by

I, =YV, -3, = YaQéVq - J, o (98)

where the source currents Ja are the same as the source
currents J, the element admittance matrix Ya is now Yy,
~ the cut set matrix Qa after the transformation is Qx since
the cut—sets Qy have been deleted, and the cut-set voltagé;
variébles'have all been reduced to zero except de S0

vV, = Vx'. Therefore, it is obvious that the edge currents I

q
giien by Equation 97 are the.same as those given by Equation
98. Thus, the edge currents remain invariant under the
transformation.

The general element admittance matrix wiil be developed
as needed in tne example that follows. Let us begin with a
simple network and its graph as illustrated invFigure 14
and Figure 15 respectively. If we choose cut-sets such that
each source edge (edge 6 in the example) is included in only
one cut-set then we may reduce the network to an equivalent

network without disturbing the sources. If we direct the
edges to agree with the firstvcut—set'to be deleted we get
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‘Figure 14. A network with corresponding element currents
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=
4

-

“Figur‘e 15. Graph of network illustrated in Figure 14
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Figure 16. ' Graph of network after deletion.of'cu’c—set 3

-
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first s rows and columns of Yy

. . Y1

~edges of Qy do not result in plus ones in.the s columns then
2 .

. If the orientation of the

the orientations of these edges (where a minus one appears)

may be reversgdzand the corresponding éign changes made in :

Yy . This 1s not necessary when making a transformation but
1 ,

is convenient in terms of deriving a general element

admittance matrix.

Let
Y = . : - | (10
v, [yy 51 g (103)
where
yij = yji (104)
and form the terms of Equation 102. The term |
S S - . ( )
Y o= X vy = L'y 105
Yo 1 Wy T 12y g T4 ] |

and since this is a scalar its inverse is its reciprocal so
we may bring together and combine the premultiplier Yy .Q§
' . - 1 2

and the postmultiplier Qy Y as
Y2 V1

z le | ”

4 _ Ty .

Y, Yo = 21 [Z 941 2940 -v ZF4e] (106)
19279271 .

" z.y | , P

L el

: s
where I is the summation defined by Equation 23 (X = I ).

This gives a géneral expression for Yy as
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qugtion 107 may be used’at each step to find the element
adﬁiétance matrix in terms of the s edges of the cut-set.
Equation 107Areduces to Equation 26 when Yyl is a diagonse
matrix. It may be more convenient to express Eguation 1C

as the difference between two matrices such that

_ 1 -

er = Z'yi-,j [Yl Y,] (

where
1

Y, ==Z yiJYyl (

and '
F' .
| 231957 B4 a0 - ¢ - V314
: " . L 3

Y, = 29108931 B3840 - o o B3 oMWie |- (

9562931 TI5e%ip -+ ¢ ¢ DI3e%ie

—

At this time let us interpret the various terms of Y, .
, vt 5
Given the element admittance matrix Yy s then since Z'yij

: 1 '
the sum of all elements in the first s columns and s.rows

Y_, we can find Y. very easily. The general term Iy
yo 1 1k

is the sum of the first s elements in column k of Yy .
| 1
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‘Therefore, Y2 may be easily formed and the difference Yl—Y2
elds Y
yi v,
Now returning to the example, let us delete cut-set 2

so we will arrange Q. as

1
1 3 5 2 4 6 Qx
' ~ 1l1 0 0 1 0 1| _ 2 A
% T '2[1-15555]“§' ' (1)
' 2

-where edge orientation of cut-set Qy was chosen to produce
S plus ones in the flrst s columns In general it is not
possible to choose all cut-sets to fit the general form as
described and it is necessary to make corresponding sign
changes in the element admittance matrix. The element
aanittance matrix may be arranged in the proper form to apply
Equation 107 by ordering rows and columns of Equation 100 to
agreé with the order of edges chosen in,Equation 111. The

element admittance mafrix Yy then becomes

. l . R
-1 3 5 2 L 6
1 0.9 -0.3 0 -0.2. -0.4 O]
3{-0.3 2.1 0 -0.6 -1.2 O
_ 51 o0 0 5 0 0 0
Yyl‘ 2|-0.2 -0.6 0 1.6 -0.8 of ~ (112)
41 -0.4 -1.2 0 -0.8 2.4 o
6 O 0 0 © 0 64
and since
E'yij = 7-4

we get
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6.66 -2.22 0 -1.48 ~2.96

0
-3.22 15.54 07 “4.4h -8.88 0
_ 0 37.0 0 0 0
Y= | 21,48 444 5 11.8% -5.92 0 (113)
-2,.96 -8.88 0 -5.92 17.76 O
L O 0 © 0 0 44.4J.
The matrix Y, 1s
- 0.36 1.08 3 -0.48 -0.96 O
1.08 3.24 9 -1.44 -2.88 o
Y, = 3 -9 25 -4 -8 0 (114)
-0.48 "-1.44 -4 0.64 1.28 0 .
-0.96 -2.88 -8 1.28 2.56 0
| O 0 0 0 0 0 |
and
‘ _ 1 3 5 2 4 6 .
1| 6.3 -3.3 -3 -1 -2 0 ]
1 5 '? 3 18°3 12 -2 _g 8 | (115)
ng ST 2[-1 -3 4 11.2-7.20 | .
Lf-2 -6 8  -7.215.20 |
6 0 0 0 0 0 44.@

Therefore, Equation 115 is the element admittance matrix of

a network whose graph is described by sz of Equation 111 .and

illustrated in Figure 17. ‘ '
Let us now see how the edge currents of the network

correéponding to Figure 17 agree with those_values given in

Figure 14. The equation describing the network is

I. = Y. Qv ' © (116)
; Xo sz Vzsz %o ‘
where .

IX2 =7 ' | (117)
and

V., =V, =7V, (118)

X 4 137
Equation 116 may be written as
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[

Figure 17. Graph of network after deletion of cut-sets:
: 2 and 3 '
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_ 59.9 '
Iy =<7 Vi3 - (119)
which gives an input admittance of-E%*% mhos between terminals

1 and 2 of Figure 17 which is the input admittance between
the corresponding terminais,in Figure 14. The edge voltages

Va after the transformation are

- -
Vil . |Vis
|5 1o T
Vs 0
Vo= = (120)
' Vs Vi3
V) 0
v v
s ] |13

since edges 1, 2, and 6 are in parallel and edges 3, 4, and
5 form self loqps as illustrated in Figure 17. This gives for

‘the edge currents I, (as given by Equation 98)

I (53] -
I, 2.3 0
%g 1 B '8 S

I, = ]I:i = =g -1—82 V13 - 8 | (121)

) MY 9y
or in terms'ofJl (from Equation 119)

rIl- r5.31 r‘o T
IB' -6-3 O
I 1 1.0 |0
13| =599 [|10.2]. i 0 (122)
Ig -9.2 0 '
i3 4.4 7,

. ot of .
which agrees with those values given in Figure 14.
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Therefore, this example demonstrates the previously
established invariance of edge currents and we have reduced
the original graph that was shown in Figure 15 to an equivalent

graph that is illustrated in Figure 17.
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IV. SUGGESTED RESEARCH PROELEMS

Several research problems can be suggested'as a result )
of this investigation. (a) If one row i is deleted from a
cut-set.matrix Q, then the remaining rows form a cut-set
matrix Q_; if the cut-set deleted satisfies the sufficient
conditions of Theorem 7. A counterexample is given to show
that these conditions are not necessary conditions. It would
be desirable to find the necessary and sufficieht conditions
for the existence of this cut-set matrix, preferably in terms
of readily recognized graph properties. In the counter-
example giveh, the graph represented by Q;i of Equation 65
does not appear to be related to the original graph illustrated
in Figure 7. If edge 10 is added to Figure 7 from vertex 1

- to vertex 2 then Q,_3 becomes

1 2 3 4 5 6 T 8 9 10
11 o-1 o o0 1 -1 1 o0 1
2lo -1 o 0 0 0 0 -1 1 -1
3 4lo 0 0 -1 -1 -1 0 O0 o0 -1 (123)
50 o0 0 0 0 -1 1 -1 -1 -1

which is not a cut-set matrix. .Therefore, whenban edge is
added, Q,_3 is no longer a cut-set matrix. This leads one to
believe that the sufficient conditions may also be necessary
conditions for a cemplete graph. Adding different columns
.(adding more edges to the greph) to the cut-set matrix may
give some insight into how the properties of the graph change

as we . add edges.
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(b) In section iIiBEc,;an example was given where a
network with onéxéource was réduced to an equivalent network
with an element admittance matrix given by Equation 115.

The general element admittance matrix (with proper oriénta—
tion of edges) is given by Equation 107 as each cut-set is
deleted. If this procedure could be reversed, then it should
be possible to use this method in the reverse fashion for
network synthesis. For example, given an element admittance
matrix, we should be able to add one cut-set at a time until
we have constructed a cut-set matfix Q and a diagonal

admittance matrix which will describe the network.
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V. SUMMARY

This investigation provides a new approach to transforma-
tions in terms of graph theotry. This-approach-is used to
provide a new derivation for the familiar star-to-mesh |
transformation in terms of the inecidence matrix A of the
graph and is then extended to a more general cut-set to mesh
transformation'using the cut-set matrix Q.

In the last method a cut-set is deleted from Q (the
edges of the cut-set are transformed) and the matrix of the
remalning rows of Q, if ‘it forms a cut-set matrix, defines an
equivalent graph described by a transformed element admittance
matrix Yy. The necessary and sufficient conditions are given
for a transformation to be physically realizable with passive
elements., If a transformationvis not physically realizable,
then the sufficlent conditions are given for a cut-set matrix
with one row deleted to be a cut-set matrix. In this case a
transformation is hypothetically realized with mutual admit-
tances. These conditions.depend upon whether tife voltage
variable of the cut-set deleted is a node-pair voltage
_variable; A.method is given whereby the cut-set voltage
variables can be determined in terms.of node-palr Voitages.

An example 1is given}where Successive transformations
reduce a graph to an'equivalent graph. The interpretation
of these steps and of the structure of the graph and the

element admittance matrix may be useful in- network
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synthesis as well as'network analysis. It might be possible‘
to devise a synthesis.prdcedure whereby we approach the

analysis problem in the reverse order and hence determine a -

network for a given admittance matrix.
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