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I. INTRODUCTION • 

Network transformations have been used for many years as 

a tool in network analysis problems. One of the most familiar 

of network reduction techniques is the star-mesh transforma­

tion and a proof of this transformation by elementary network 

methods may be found in any basic electronics text such as 

Boast (l). A proof of this transformation will be developed 

in this thesis by linear graph theory in terms of the 

incidence matrix of the graph. A star-mesh transformation 

actually deletes one incidence set (one row of the incidence 

matrix A or one node of the network) of the defining matrix 

and the transformed graph is described by the new incidence 

matrix that is formed. Likewise, another transformation could 

logically be developed by the use of the more generalized 

cut-set matrix Q where a transformation would result in the 

deletion of one cut-set. If one row of an incidence matrix A 

is deleted the remaining matrix is still an incidence matrix. 

However, if one row of a cut-set matrix is deleted, the 

remaining rows do not necessarily define a cut-set matrix. 

Therefore, it will be necessary to determine conditions for 

the existence of a cut-set matrix after the deletion of a 

cut-set of edges. 

This cut̂ set to mesh transformation which has been 

developed for use in topological analysis might possibly be 

extended to be of use in the synthesis of network problems. 
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II. DEFINITIONS AND THEOREMS' . 

This section contains a list of definitions and theorems 

that are necessary for understanding the development of the " 

remaining sections. The definitions which are well standardi-

ized and the theorems for which proofs are not given may be 

found in the literature as indicated. The theorems for which 

proofs are given could not be found in the literature and are 

believed to be original. 

A. Definitions 

1. A network element is any network component such as a 

resistor, capacitor, source, etc. 

2. (13)  An edge or element of a graph (the former 

will be used where possible so as to distinguish 

between the common usage of the word element in 

matrix theory) is a line segment together with its 

distinct endpoints. 

3.  (13)  Associated with each network element are two 

real valued functions of bounded variation of the 

real variable t, an element voltage and an element 

current. The terms edge voltage and edge current 

of, a graph will also be used to denote the element 

voltages and currents of the corresponding network 

elements. 

4. (13)  An oriented edge is an edge with orientation 
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shown by an arrowhead, on the edge pointing away 

from the first vertex and toward the second vertex. 

5. (13) A vertex is an end point of an edge. The word 

node is sometimes used for a vertex. 

6.  (13)  A linear graph is a collection of edges, no 

two of which have a point in common that is not a 

vertex. Only graphs containing a finite number of 

edges will be considered. 

7.  (13)  A graph in which every edge has been assigned 

an orientation is a directed graph. 

8.  (13)  A subgraph is a subset of the edges of a graph 

and is therefore a graph. 

9.  (13)  A graph G is connected if there exists a path 

between any tv.ro vertices of a graph. 

ID. (13)  A graph G is nonseparable if every subgraph of 

G has at least two vertices in common with its 

complement. All other graphs are separable. A 

graph is separable if it consists, of- two subgraphs 

that are joined at only one vertex. In this paper 

a linear, directed, connected, nonseparable graph 

will be referred to simply as a graph G. 

11. Two networks are equivalent networks if the voltage 

and current variables at the ports of interest are 

the same for both networks. There are many patterns 

of equivalence as shown by Reed (l2)so it is 
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necessary to define equivalence as above for this 

development. 

12. If two' networks are equivalent then the graphs of 

these networks will be defined as equivalent graphs ̂ 

This does not imply that the two graphs are the same. 

13. (13)  A vertex and an edge are incident with each 

other if the vertex is an endpoint of the edge. 

14. (13)  The degree of a vertex is the number of 

edges incident at the vertex. 

15.  A graph G with v vertices is a complete graph if 

each pair of vertices is connected by an edge (a 

series or parallel connection of edges is not 

allowed). An equivalent statement is that the 

degree of each vertex of a complete graph is v-1 

and no edges are in parallel or series. A complete 

graph has edges. 

16.  (13)  The incidence or vertex matrix, denoted by 

A_ = [a.,], of a graph with v vertices and e edges, 
a X J 

is the matrix with v rows and e columns. Each row 

corresponds to a vertex, and each column corres­

ponds to an edge, such that 

â j = 1 if edge j is incident at node i and directed 

away from node i, 

â j =-l if edge J is incident at node i, and 

directed toward node i, and 
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a. . = 0 if edge j Is not incident at node i. 
-LJ 

A matrix formed by removing one row from A will be 

labelled the incidence or vertex matrix A. The A 

matrix may contain at most two non-zero elements per 

column and if there are two non-zero elements in any 

column then one element must be à plus one and the • 

other element a minus one. 

17.  (7)  A maximally connected subgraph of a graph G 

is a subgraph of G or the graph Itself such that the 

addition of an edge in the complement of Ĝ  to Ĝ  

makes the resultant subgraph no longer connected. 

If G is a connected non-separable graph, the maxi­

mally connected subgraph of G is the graph itself. 

18.  (13)  The rank of a graph with v vertices and p 

maximal connected subgraphs is v-p. The rank of a 

connected non-separable graph is the same as the 

rank of A which is v-1. 

19. (13)  The nullity of a graph with e edges, v vertices, 

and p maximal connected subgraphs of |a = e-v+p. 

20. (13)  A cut-set is a set of edges such that the 

removal of these edges from G reduces the rank of. 

G by one, provided that no proper subset of this set 

reduces the rank of G by one when it is removed from 

G. 

21. (13)  The cut-set matrix, given by Q,̂  = of a 
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graph with v vertices and e edges, is the matrix 

which has one row for each cut-set of the.graph and 

e columns, such that 

q. . .= 1 if edge j is in cut-set i and the orienta-

tions agree, 

= -1 if edge j is in cut-set i and the orienta­

tions are opposite, and 

q.. = 0 if the edge j is not in cut-set i. 
<v 

A matrix, formed from v-1 independent rows of 

will "be, labelled the cut-set matrix Q. 

22. A complete incidence matrix is an incidence matrix 

of a complete graph with v vertices and e edges. 

23. (13) A tree is a connected subgraph of a connected 

graph which contains all the vertices of the graph 

but does not contain any closed paths (circuits). 

24. (13)  The fundamental system of cut-sets with respect 

to a tree is the set of v-1 cut-sets, one for each 

branch, in which each cut-set includes exactly one 

branch of the tree. The fundamental matrix therefore 

contains a unit matrix as a submatrix. 

25.  A matrix A of order (m,n) is of maximum rank if 

the rank of A is m for m 5 n and n for n < m. 

26.  (5)  A major determinant of a matrix is any deter­

minant of maximum order of a matrix. 

27.  (5)  A major determinant of the matrix A and a 
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major determinant of the matrix B are said to be 

corresponding: majors of A and B only if the columns 

of A used to form the majors of A have the same 

indices as do the rows of B used to form the majors 

of B. 

28.  (13)  If the current and voltages of an n-terminal 

network are written in the matrix form I = YV, 

where the voltages are with respect to an additional 

isolated node and the currents are directed into the 

terminals, then the matrix Y is termed the indefinite 

admittance matrix of the network. The sum of the 

elements in every row of Y is zero and the sum of 

the elements in every column of Y is zero. Huelsman 

(6) shows a proof of these conditions. 

B. Theorems 

Theorem 1 (5) .  If A is a matrix of order (m,n) and B is 

a matrix of order (n,m), and if m < n, then det AB is 

equal to the sum of the products of the corresponding 

majors of A and B. 

Theorem 2 ( 2 ) .  If C is the transpose of a square matrix 

C then det C = det C. 

Theorem 3. If A is a real m by n matrix (m < n) which 

has rank m_, then the rank of AA' is also m, so that AA' 

is a non-singular, symmetric matrix of order m with 

positive diagonal elements. 
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Proof. To prove the theorem, let us apply the Blnet-

CTauchy Theorem (Theorem l) and write the det AA' as the sum 

of the products of the corresponding majors, M. of A and Ml 
, J J 

of A'. This result may be written as 

a 
• det (AA') = .S-, M̂ .M< (.1) 

J—J- J -.1 

where a = (̂ ) (n columns, m at a time). 

By Theorem 2, M. = Ml so Equation 1 may be written as 
J J 
a o 

det (AA') = Z (M.)̂  (2) 
j=l  ̂

where all terms are non-negative and since A has rank m there 

must be at least one M̂  of order m that is non zero so det 

(AA') ̂  0, which proves that AA' is non-singular. 

To prove that AA' is symmetric let 

B = AA' (3) 

and show that B = B'. Take the transpose of both sides of 

Equation 3 and using the fact that (A')' = A we get 

B' = (AA')' = AA' (4) 

which proves that AA' is symmetric. For a matrix A with real 

elements, each main diagonal element of AA' in the ii position 

is the sum of the squares of all n elements in the ith row of 

A, hence non-negative. The matrix A may not contain a row of 

zeroes since it has i'ank m so all diagonal elements of AA' 

must be positive. 
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III. NETWORK TRANSFORMATIONS 

A. Derivation of the Star-Mesh Transformation 

For any electrical network N with corresponding graph G 

consisting of e edges and v vertices, Kirchhoff's current law 

may be written (13) as 

Ai(t) = 0 ( 5 )  

or 

Qi(t) = 0 (6) 

where A and Q are the incidence and cut-set matrices respec­

tively that were previously defined, and 

i(t) = 

il(t) 

io(t) 

left) 

(7) 

where î (t) is the current associated with edge k. 

Let us assume that all edges of the graph represent 

resistive elements of the network and that each current source 

j,̂ (t) has a shunt admittance ŷ  and the two network elements 

will be represented by one edge k with the reference convention 

as shown in Figure 1. Either ŷ  or ĵ t̂) may be zero. For 

convenience,, let us assume that all voltage generators have a 

series impedance and will be transformed into an equivalent 

network as shown in Figure 1. This is not a restriction since, 

a voltage source with no series impedance could easily be 
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i.(t) 

e 
L(t) 

6 

Vk 
VŴ  

= V̂ 5(t) è 
b 

(a) Network element k 

O-
0 

(b) Edge k 

Figure 1. Current and voltage convention for an edge k 
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handled by the Blakesley E-shift as described by Reed (ll). 

All parallel network elements will be combined and considered 

as one edge. 

Letting capital letters correspond to Laplace-transformed 

quantities, the edge currents may be expressed as 

I = YV - J  ̂ (8) 

where the edge voltages are -

V, 

V = 

V, 

V. 

(9) 

y is the diagonal admittance matrix of e diagonal elements, 

and the current sources are 

J, 

J = (10) 

The edge voltages V are related (13) to the node voltages 

(11) 

(also called node-datum voltages) by 

V = A'V 
n 

where 

n̂= 

Id 

2d 

V pd 

, p = v-1. (12) 
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A' Is the transpose of A, and is the voltage of node k 

with respect to the reference or datum node d. If Equation 

11 is substituted into Equation 8 and the result multiplied 

by A, then 

AI = AYA'V̂ -AJ (13) 

and since AI = 0 from Equation 5 we get ' . 

AJ = AYA'V̂  . , (14) 

The left side of Equation l4 is a column matrix of source 

currents associated with each vertex or node and will be 

called the node currents Iĵ  so Equation l4 may be written as 

In = . (15) 

Equation 15 can be written in partitioned form as 

I A 1 V 
_̂ n X 

y A' I A' 
0 A X I y V 0 y 1 yn 

(16) 

where represents those vertices that are not incident to 

a source edge (edge representing a source as illustrated in 

Figure l), V represents the corresponding node voltages, 
n̂ 

and Â  represents the remaining incidence sets of A with 

corresponding node currents I and node voltages V„ . 
n̂ n̂ 

Equation l6 may be arranged as 

(17) 

f 
A YA ' ! __n 

0 A YA' ' 0 
y X J 

V x_ __n 

V 

1 

or in terms of two equations 
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and 

. ° + V4% • 

As will be shown later, A YA' is non-singular and.Equation 19 
o o 

may be solved.for V and this result substituted into Equation 
n̂ 

18 to yield 

Let us now apply this equation to a network N with a 

star subnetwork as shown in Figure 2 where none of the edges 

of the star contain sources. 

If we now form the incidence matrix.for the graph of 

Figure 2, the result is 

1 2 .  .  s  s + 1  8 + 2  .  e  
s+2 

8+3 

• (̂ x̂ ll (̂ x)l2 

v-i 
1 

2 

• ^̂ x̂ 21 ^̂ x̂ 22 

s 1 
s+1 A y 

Since the edges 1, 2, .s are incident only to the 

(18) 

(19)  
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l4 

V 
reference 
vertex 

Figure 2. Star network imbedded in a network N with s 
admittances incident to vertex s+l 
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vertices 1, 2., s+1, then (Ax)̂ .̂ = 0 and witli orienta­

tions as shown in Figure 2 the submatrix (A )̂2i becomes a 

negative unit matrix and the submatrix contains plus ones 

in the first s columns followed by zeroes in the remaining 

columns of A. 

The diagonal element admittance matrix of the network is 

y = 
Y I s+1 

•s+2 

(22) 

and the term 

which is certainly not zero so its inverse exists and 

• • • 

YgYl V3 • • • Vs 

Vl Vs 

0 

Let the bracketed term of Equation 20 be called Y for y 
simplicity such that 

ï y (  V P "  V  

(23) 

(24) 

(25) 
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and the result Is 
s 

(Y. E Y ) ' 
1=2  ̂ -V2 -?1?8 

E Ŷ ., , E Y, 

?2(?1+ il] ?l) 

J. 

-%2?s 
0 S Yi S Ŷ  • •  
0 

-?8?1 
• = Y 

3̂ lîl 1 

"l S Ŷ  

0 

S Ŷ  

7s+l 

?s+2 

ê 
L 

(26) 

The congruence of may be formed as 

Yy = H Ŷ H' (27) 

where Ŷ  is a diagonal matrix of (|) + e-s elements, where 

the s edges incident to vertex s+1 have been replaced by (|) • 

(s things taken 2 at a time) transformed edges and the remain­

ing edges not incident to vertex s+1 are the same. The 

(g) transformed edges are the combinations of the products 

of s admittances taken two at a time divided by the sum of 

the s admittances. The negative of these terms are those 

terms below the major diagonal of Ŷ  in Equation 26 and 

are arranged as 
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^d= 

12 

Is 

23 

2s 

3s 

s+1 

s+2 

12... Is 23... 2s... ps s+1 s+2...e 

12 

îs 0 0 

23 

0 2s 
<• 

B9 

"1? I s+1 

I 
?s+2 ° 

where g = s-l, 

Y % 
12 - E Ŷ  

and likewise for the other diagonal elements of Ŷ  

The matrix H may be partitioned as 

H = 0 

0 I n  
I 

where may be written as 
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1 

2 

3 

18 

1 2  1 3  . . .  I s  2 3  . . .  2 s  3 4  . . .  3 s  . .  .  g s _ ;  

1  1 1 1 1 1  

- 1  1 1 1 1 1  

- 1  - 1  1 1 1 1 1  

-1. -1 -1" -1 

(31) 

where only the non-zero terms have been shown. The columns 

are numbered to correspond to the double subscript notation 

appearing in ()]_]_• 

The matrix may be formed by placing, in any column 

be (b < c), a plus one in row b and a minus one in row c. 

Therefore, becomes a complete incidence matrix. 

Equation 20 may now be written as 

(32) 
n 

or 

W ) ( 3 3 )  

since (Â H)' = H'Â . 

Equation 33 has the same form as Equation 15. Therefore, 

if A^H is an incidence matrix then there is a corresponding-

graph Gg with v-1 vertices and e+(|)-s edges which is 

equivalent to the original graph G. The rank of G is v-1 

and the nullity of G is |a = e-v+1. The rank of Gg is v-2 

and its nullity is = e+(2)-s-(v-l)+l. Therefore, in the 

equivalent graph the rank has been reduced by one and the 
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nullity has been increased by (|)-s+l. When s = 3 the rank 

has been reduced by one and the nullity has been increased 

by one. For s > 3, the nullity has increased by a greater 

amount than the rank has decreased. 

If Â H is written in partitioned form as 

-V I (Ax)22 

J?ll_î ° 

0 I 
I 

u 

0 

-H 11 ! 
i (34) 

then it is obvious that since is an incidence matrix and 

the remaining columns are the same as the e-s columns of A, 

AH is also an incidence matrix. .Therefore AH describes an 

equivalent network where vertex s+1 has been deleted and 

network elements 1, 2, ..., s have been replaced by trans­

formed elements connected between each pair of vertices 1,-

2, ..., s. The element admittance matrix for the equivalent 

network is given by Equation 28. This completes the 

derivation of the star-mesh transformation which is illustrated 

in Figure 3-

B. Derivation of a Cut-Set to Mesh Transformation 

This development will follow the pattern of the previous 

development except the cut-set matrix Q will be used to 

define the graph rather than the incidence matrix A. This 

is more general since an incidence set is also a cut-set 

but the converse is not true. 

The edge voltages V are related to the cut-set voltage 

variables V_ as q 
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reference 
vertex 

Figure 3. Mesh network, equivalent to star network of 
Figure 2 
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V = Q' 

where 

V 
^1 

J P = v-1. 

(35y 

(36) 

V. 

and V is the voltage variable of cut-set k. If Equation 35 
^k 

is now substituted into Equation 8 and the result multiplied 

by Q, then 

01 = QYQ'Vq - %r (37) 

and since QI = 0, the result is 

QJ = QYQ'V̂  . (38) 

The left side of Equation 38 is a column matrix of source 

currents associated with each cut-set of the network and will 

be labelled I , so Equation 38 may be written as 

Iq = SrQ'Vq . 

Equation 39 may be partitioned such that 

(39) 

Sc 

0 
Y CQi ; Q'] 

X, 

V y. 

(40) 

where represents cut-sets which do not contain sources and 

V represents the corresponding cut-set voltages. The 
^q 
submatrix Q_ is the remaining cut-sets of Q, with and 

% Xq 
V representing the corresponding cut-set currents and 
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remaining cut-set voltages. Using the same procedure as was 

used to derive Equation 20, we get as an equivalent equation, 

% = • CD ' 
• q q 

If a network may be realized that is described by 

Equation 4l then we have found a transformation as in Section . 

A but instead of replacing a star by a mesh we will replace 

a cut-set by a mesh. The first case to be investigated will 

be a transformation physically realizable with passive 

network elements (i.e., positive-valued elements). 

1. Transformations physically realizable with passive 

admittances 

Now consider a graph G of v vertices and e edges as 

illustrated in Figure 4 which is divided into two subgraphs 

and Ĝ , connected by the cut-set G = ĉ , Cg, ..., ĉ  

which contains no sources. Let ŵ  be the vertices of G. n -L 1 

where i of these vertices are incident to the edges of G and 

u^ be the vertices of Gg where k of these vertices are incident 

to the edges of G. The remaining e-s edges are indicated by 

the dotted lines. We will choose v-2 cut-sets which will be 

n-1 Incidence sets of G-ĵ  m-1 incidence sets of Gg and 

for Convenience let the two vertices that are deleted from A„ a 

be Wĵ  and û  (one reference vertex on each side of C, 

incident to an edge or edges of C). Then since 

n + m = V ' (42) 
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one additional cut-set will be needed to obtain v-1 Indepen-

dent cut-sets. Choose C to be this additional cut-set with 

edge orientations as shown In Figure 4 and form Q such that 

It may be partitioned as 

°1 °2 • 

1̂+1 

1̂+2 

w. n 

u k+l 

u k+2 

w. 

Wy 

w 
1-1 

U-, 

Ur 

u k-1 

(V 11 

(Ox) 21 

r 

e-s edges not in C 

(V 12 

(Sc) 22 

S • 

. (43) 

All elements of (Qx̂ il zero since the-vertices ŵ ĝ 

.%% ..and u k+l' ̂  
,, .... u_ are not incident to the edges 
k+2 ' m 
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i+l 

k+2 i+2 

Figure 4. Connected non-separable graph G of v vertices 
and e edgee, with subgraphs and Gg connected 

by the edges of the cut-set Ç 
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of cut-set C. Likewise,, the non-zero elements of rows w. . 
1 

through Wĵ _̂  of (0̂ )22 positive since each edge of C is 

oriented away from these vertices and the non-zero elements 

of rows û  through û _2 of (0̂ )̂21 a.re negative since each 

edge of C is oriented toward these vertices. 

Since and are identical, the term of Equation 4l 

in the brackets is equal to Yy. of Equation 27 so Equation 4l 

may be written as 

• ( w )  

It is now necessary to determine when Is a cut-set matrix. 

Since (13) 

Q = DA, (45) 

where D is a non-singular transformation, then if is an 

incidence matrix it is also a cut-set matrix. 

If Q̂ H is written in partitioned form as 

Q̂ H = (16) 

Ŝĉ aAl I Ŝĉ 22 

and since the e-s columns (e-s edges not in cut-set C) of 

Q̂ H are the same as the corresponding columns of then if 

the matrix (Q%)21̂ 11 (is not) an incidence matrix then 

Q̂ H is (is* not) an incidence matrix. 

With these elementary remarks, the following theorem may 

be stated. 

Theorem 4. The matrix Q̂ H is an incidence matrix if 
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and only if the suhmatrix (0̂ )2% does not contain an S 

submatri.x where . 

1 0 
S = 

0 -1 
(47) 

Proof: The sufficiency of the above theorem may be 

shown by assuming that Q̂ H is not an incidence matrix and 

proving that ('̂ )2i contains at least one S submatrix. If 

21̂ 11 1 ah incidence matrix, then there is at least 

one column ab (the double subscript notation refers to the 

column designations given to in Equation 31) of (Ô Jgî ll 

that contains at least two plus ones or two minus ones in 

two rows c and d of ('̂ )2i%i* Each row of (0x̂ 21̂ 11 represents 

the sum or minus the sura of n rows of where n is the 

number of non-zero terms in the corresponding row of (05̂ )21* 

For a plus one to appear in any row of (Q%)21̂ 11 there must 

be at most s-1 non-zero terms in the corresponding row of 

(0̂ )21. If there are s non-zero terms in any row of (Q%)2i 

then the corresponding row of (Q%)21̂ 11 be a row of 

zeroes since is a complete incidence matrix. In column 

ab of a plus one appears in row a and a minus one appears 

in row b for a < b. For a plus (or minus) one to appear in 

row c column ab of (%ç)21̂ 11" there must be in row c of 

(0̂ )21 a plus (minus) one in column a or a minus (plus) one 

in column b but not both. For a plus (or minus) one to appear 

in row d column ab of (Q%)21̂ 11 there must be in row d of 



www.manaraa.com

27 

(0̂ )21 a plus (minus) one in column a or a minus (plus) one 

in column b, but not both. Since (Qx)21 incidence set, 

column ab may not have a plus (or minus) one in both row c 

and d. Therefore, an S submatrix exists in « 

For the other part of the proof, assume that an S 

submatrix appears in rows c and d and columns a and b of 

(0̂ )21» Since is a complete incidence matrix With (|) 

independent columns, there are two rows a and b of which 

have two non-zero elements in column ab, one element being a 

plus one and the other element being a minus one. Therefore, 

in column ab of (Q̂ Jgî ll plus ones or two minus ones will 

appear in rows c and d. Hence 21̂ 11 likewise Q̂ H is 

not an incidence matrix. This completes the proof of the 

theorem. 

In terms of the edges of C, no transformation will exist 

if one edge of C, say c , is incident to vertex w of G. 
& & _L 

but not incident to vertex û  of Gg and another edge ĉ  is 

incident to û  but not ŵ .̂ .Neither of the vertices Uĵ  

and w-ĵ  may be the reference vertices that were chosen. 

As an example, let us choose the network N composed of 

networks and N2 connected by edges one through four as is 

illustrated in Figure 5a. With W2 and û  chosen as the 

reference nodes, ('̂ )2x be written as. 
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(a) Network N 

24 

34 

• U 
node Wg and u 

identified 

(b) Network N̂  

Figure 5- A network N and its equivalent transformed 
. - network N̂  
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(Se) 21 

1 2 3 • 4 

Wi " 1 1 1 0~ 

1̂ -1 0 0 0 

U2 0 -1 0 0 

(48) 

and since (Ox)21 does not contain an S submatrlx then 

is an incidence matrix. 

The product (Ô Jgî ll becomes 

(̂ 5̂ 21̂ 11 

12 13 l4 23 24 34 

0 0 1 0 1 1 

1̂ -1 -1 -1 0 0 0 

2̂ 1 0 0 -1 -1 0 

(49) 

and the network of the transformed graph represented by the 

incidence matrix of Equation 49 is illustrated in Figure 5b. 

The admittances Ŷ ,̂ etc. in Figure 5b are 

Y _ % 1̂2 - Ŷ +Yg+Ŷ +Ŷ  ' 
y % 
1̂3 ~ Ŷ +̂Yg+Ŷ +Ŷ  ̂ (50) 

and likewise for the other edges. 

Some other transformations are illustrated in Figure 6. 

It is common knowledge that if two 2-terminal networks 

and Ng with" terminals 1 and 2 are connected at terminals 1 

by Y-, and at terminals 2 by Yg, then an equivalent network 
Y Y % 

is one with admittance between terminals number 1 of 
Ï2 

both networks and the number 2 terminals shorted together. 

This equivalent network is shown in Figure 6a. This method 
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NETWORK EQUIVALENT 
TRANSFORMED NETWORK 

a  
Y, 

w, 0 ^vv——eui 

Yz 
9 vAA/* ^—•"2 

\2 

•W?.Uî» 

b Y| 
w, -—-WVA- !—ou, 

WgO —vW -^"2 

W, «L \X^ 

^ ̂12 

^̂ 2 ."2 

c Y, 
w, e,=:—--vvv\r ou. 

d 
Y, 

W|«^ —#U| 
"1 

V i 
< 
:Y,3 

e Y, 
w, 0^— »u, 

V>^"3 

M 

>45: •Y,3 

e 
M 

>45: 

Y34 "3 

Figure 6. Networks and their equivalents 
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presents a proof of this rather obvious transformation. The 

equivalent networks of Figure 6c and 6d are networks where 

network contains only one vertex w^. These transformations' 

are the familiar star-mesh transformations which were 

derived previously. If the network is separable ât vertex w^ 

then may contain vertices other than w^ and the star-mesh 

transformation may still be used after the network is 

separated. 

Theorem 4 gives the necessary and sufficient conditions 

for Q^H to be an incidence matrix in terms of the edges of 

the cut-set involved. It was originally believed that the 

conditions, for to be a cut-set matrix, could be determined 

solely by the edges of C, independent of the remainder of the 

graph, but such is not the case. This will not be pursued 

further since Gould (3), Tutte (15)} Lofgren (8), and 

Mayeda (9) have presented methods for determining whether a 

matrix is a cut-set matrix of a nonoriented graph and recently 

Mayeda (lO) has modified his method to include the necessary 

and sufficient conditions for a matrix to be a fundamental 

cut-set matrix of an oriented graph. 

A more general approach will now be taken where the 

congruence of Yy will not be formed and it will become 

necessary to determine when a general (not necessarily 

restricted to incidence sets as was done in Section IIIBl) 

is still a cut-set matrix. 
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2. Transformations hypothetlcally realizable with mutual 

admittances 

•A cut-set to mesh transformation hypothetlcally realiz­

able with mutual coupling between edges can be found for a 

more general class of networks than those already discussed. 

For this derivation, the bracketed term of Equation 4l 

labelled Yy will not be reduced to a diagonal admittance 

matrix as was done previously. The admittance matrix 

will be hypothetlcally realized with self admittances repre­

sented by the diagonal terms and mutual admittances repre­

sented by the off diagonal terms and with a configuration 

corresponding to the graph of the cut-set matrix Q̂ . It now 

becomes necessary to find the conditions under which is 

a cut-set matrix. 

If Equation 11 is equated to Equation 35.as 

Q'Vq = A'Vn ' (51) 

and if the t3̂ nspose of Q from Equation 45 is substituted 

into Equation 51̂  the result is 

A'D'Vq = A'V̂ . (52) 

In general, we cannot assume by the conditions of 

Equation 52 that D'V = V_ but, since A satisfies the 
* * Q n 

conditions of Theorem 3̂  both sides of Equation 52 may be 

multiplied-by (AA')~̂ A. Using the result that (AA')~̂ (AA') 

= U we get 

\ = D'T^. (53) 
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This now leads us to the following theorem. 

Theorem 5- Given a.graph with v vertices and à cut-set 

matrix Q, if any i num.ber of cut-sets (rows) 

(O < i < v-l) are deleted from Qj then the remaining 

(v-l)-i rows form a cut-set matrix if the voltage 

variables of the i cut-sets V are a linear independent 

combination of i node-datum voltage variables 

Proof: Assume that the i node-datum voltage variables 

V.^ are related to the i cut-set voltages V as 

\a = Dgg'v (54) 

where D^g' is non-singular. It is then possible to write 

Equation 53 in partitioned form thus: 

V Id 

2d 

V ad 

V id 

°2l' 

2̂2' 

V. 

V. 

v_ 

(55) 

where a = p-i = v-l-i. Since D' is non-singular and has rank 

v-l, the must be non-singular. Equation 45 may now be 

written in partitioned form as 

D.-l I 0 

I D 

•H
1 

I 

21 22 

-i (56) 
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where A. is a matrix formed from i rows of A and A . is the 
-L —1 

matrix A with i rows deleted. Therefore, 

r̂-i " ̂11̂ -i • (57) 

and, since A_̂ .is an incidence matrix and is non-singular, 

Q_̂  is a cut-set matrix. This completes the proof which 

gives the sufficient conditions for to he a cut-set matrix 

and hence the existence of a cut-set to mesh transformation. 

As a special case of the above theorem for i = 1 (one 

row deleted), is a cut-set matrix if is a node-pair 

voltage (a voltage between a pair of nodes). For this case" 

the term node-pair voltage may be more appropriate. 

The conditions of Theorem 5 are not necessary conditions 

for Q_̂  to be a cut-set matrix as is illustrated by thé 

following example. 

Given the graph of Figure 7 with v-1 independent cut­

sets shown as dotted lines, then Q becomes 

Q = 

1 2 3 4 5 6 7 8 9 
1 ' 1 0 1 0 0 1 -1 1 0 
2 0 -1 0 0 0 0 0 -1 1 
3 0 0 1 0 -1 0 -1 1 0 
4 0 0 0 -1 -1 -1 0 0 0 
5 0 0 0 0 0 -1 1 -1 1 

(58) 

If the incidence matrix is chosen as the incidence sets for 

vertices 1, 2, 3̂  4,and 5 (vertex 6 is chosen as the 

reference vertex) then 
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n e  

Figure 7. Graph with cut-sets shown as dotted lines 
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 ̂1 2 3 4 5 6 7 8 9 
1" 1 0 0 0 1 1 0 0 0 
2 0 -1 0 0 0 0 0 -1 1 
3 0 0' 1 0 -1 0 -1 1 0 
4 -1 0 0 1 0 0 0 0 0 
5 0 0 -1 -1 0 0 0 0 -1 

A = 

and the non-singular transformation D relating Q and A 

(59) 

D = 

and 

D' = 

1 2 3 4 5 

1 0 1 ol 0 
0 1 0 0' 0 
0 . 0 1 01 0 
•1 0 0 -11 0 

•1 0 -1 
h 

-Il -1 

1 0 0 -1 -1 
0 1 0 0 0 
1 0 1 0 -1 
0 0 0 -1 -1 
0 0 0 0 -1 

(60) 

(61) 

If we substitute Equation 6l into Equation 53 and solve 

for Vq the results are 

1 II 

C\
J 

>
 

II 

s 

II 1 

O
N 

=  - v . , ^  

^4 
A'O) 

46 14' 

+ ̂ 36 + ̂ 46 - ̂ 56 = ̂ 45 ~ ̂ 13' 

+ ̂ 56 = ̂ 54' 

(62a) 

(62b) 

(62c) 

(62d) 

and 

\ = -'56 = % • (62e) 

Therefore, the voltage variables of q̂ , qĝ  qî ĵ and q̂  are 

node-pair voltage variables but the voltage variable of 

cut-set 3 a combination of node-pair voltages. 
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To demonstrate the'use of Theorem 5, let us delete row 

5 from Q and the result Is 

-̂5 = 

1 2 3 4 5 6 7 8 9 
1 1 0 1 0 0 i -1 1 0 
2 0 -1 0 0 0 0 0 -1 1 
3 0 0 1 0 -1 0 -1 1 0 
4 0 0 0 -1 -1 -1 0 0 0 

(63) 

which is a cut-set matrix since, from the partitioned form of 

Equation 60, 

1 2 

Q-5 = 
1 
0 
0 

-1 

0 
1 
0 
0 

3 4 

1 o] 
0 0 
1 0 
0 -1 

A 
-5 

(64) 

where A_^ is the A matrix of Equation 59 with row and column 

ordering preserved and row 5 deleted. The graph represented. 

by Equation 63 is illustrated in Figure 8, where the edges 

shown by heavy lines represent those edges that have been 

transformed (values changed) and are mutually coupled. The 

voltage variable of cut-set 5 was the voltage as given by ' 

Equation 62e, so these two.vertices are identified or 

coalesced. If an edge had been present between these 

vertices then a self loop would be present at these vertices 

in the graph of Figure 8. The element admittance matrix with 

off diagonal terms may be visualised by mutual admittance 

but it may be impossible to physically realize (build) such 

a network. However, this does not prevent us from using this 
. 

method to reduce a network for analysis purposes. 

The other cut-sets whose voltage variables are node-datum 
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4̂  5.6 

2 

Figure 8. Transformed graph of Figure 7 with cut-set 5 
deleted 



www.manaraa.com

39 

voltage variables may be deleted by proper arrangement and 

partitioning of an appropriate non-singular 'transformation 

since the form of D depends upon the reference node chosen. 

However, even though the voltage of cut-set 3 is not a node-

datum voltage, Q;_2 is a cut-set matrix since a non-singular 

transformation and an incidence matrix may be found as 

Q_3 = 

1 0  0  0  
0  1 0  0  
0  0  1 0  
0  1 1 1  

1 0 1 0 0 1 - 1 1 0  
0  - 1  0 0 0 0 0  - 1  1  
0  0  0 - 1 - 1 - 1  0  0  0  
0  1 0 1 1 0 1 0 0  

(65) 

The graph of Equation 65 has no apparent connection with the 

original graph of Figure 7. This shows that if a cut-set 

voltage variable V is not a node-pair voltage variable, 
%1 

then the matrix formed by deleting row i from Q may be a cut­

set matrix. This is a counterexample which proves that the 

sufficient conditions of Theorem 5 are not necessary for 

Q ̂  to be a cut-set matrix. 

The problem of determining whether a cut-set voltage 

variable is a node-pair voltage may be solved by writing a 

set of equations such as those given in Equation 62 (after 

first determining (D')~̂ ) or a much easier method is con­

tained in the interpretation of Theorem 6 which follows. 

Theorem 6. Given a complete graph of v vertices with a 

set of v-1 Independent cut sets, then the voltage 

variable of cut-set 1 Is the same as the voltage Vari­

able of edge j or the negative of the voltage variable 

of edge j, if and only if any edge j appears In only 



www.manaraa.com

4o 

one out-set 1. 

Proof: Assume edge j appears in only one cut-set i, then 

Q contains a column j with only one non-zero element in row 

Q^. Therefore, by Equation 35 

• Vj = ± (66) 

which completes the proof of the sufficiency of the theorem. 

For the other part of the theorem, assume that the voltage of 

edge J is related to the voltage of cut-set i by Equation 66. 

This can be true if row j of Q' has a ± 1 in column i and 

zeroes in the other v-2 columns or if the combinations of the 

other cut-set voltages present in row j of Q'V̂  ̂are zero. 

Let us assume that the last mentioned case is true and the 

result is 

Vj = ki + kgVqg + ... + ± \ (67) 

where kg, ..., k̂  are elements of row j of Q' and a = v-2. 

Since we must satisfy Equation 66 we get 

+ ... = (68) 

but since the voltage variables of the cut-set form an 

independent set of voltages, this can only be true if all the 

scalar8 k of Equation 68 are zero. Since the scalars k are 

the elements of row j of Q' and all are zero except the 

coefficient of Vq , then column j of Q must have only one 

non-zero element in row i. This completes the proof. 

As an introduction to the next theorem let us define 
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the cut-set matrix Q as being a set of v-1 independent cut­

sets of the graph G with v vertices and e edges and the cut­

set matrix Q as the matrix Q augmented by the columns 

corresponding, to the fictitious edges of the complete graph 

Qg. We may now state the following theorem. 

Theorem 7. Given a graph G and its cut-set matrix Q we 

may form Ĝ  and (as described previously). If any 

edge or fictitious edge of G appears in only one cut­

set, then this cut-set may be removed from Q and the 

remaining rows of Q will still be a cut-set matrix. 

Proof: Assume edge j of Ĝ  appears in only cut-set i, 

then by Theorem 6 the voltage variable of cut-set i of Ĝ  

is the same as the voltage variable of edge j or the negative 

of the voltage variable of edge j. Since the cut-set 

voltage variables of G are the same as those of Ĝ  then by 

Theorem 5 it is obvious that Q with row i deleted is a cut-set 

matrix. This completes the proof. 

An example showing that these conditions are not necessary 

is given in Section III B. 

a. Relationship between node-pair and cut-set voltage 

variables Theorem 6 may be used for a graph that is not 

complete by assuming fictitious edges to make the graph 

complete. There will be a total number of - edges of 

the graph since it was assumed that all parallel edges would 

be combined into one edge. In the complete graph all node-pair 
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voltages are edge voltages since there is an edge or 

fictitious edge between each pair of nodes. This provides us 

with an easy method of determining'all cut-set voltage vari­

ables which are node-pair voltages by merely examining the 

graph with its v-1 independent cut-sets or the cut-set matrix 

V  

The edge voltages V of G are related to the cut-set 

voltage variables Vq by Equation 35 (V = Q'Vq) and if 

Equation 35 is solved for the result is 

Vq = (QQ')-̂ QV. (69) 

If is used in Equation 69 then the edge voltages are the 

voltages of the edges of rather than the edges of G. It 

is usually easier to solve for the cut-set voltages by other 

methods since more time is involved in solving for (QQ')~̂ Q. 

These methods will be discussed next. 

By proper arrangement of columns, any cut-set'matrix may 

be transformed into a fundamental cut-set matrix by pre-

multiplication by a suitable non-singular matrix E of order 

v-1 so  ̂

Of. = EQ (70) 

where 

Op = [u ! (L ]. (71) 
• 1̂2 

If Equation 70 and 71 are substituted into Equation 35 the 

result is 
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V = _u 

Of. 
12 

(72) 

and if V is partitioned then we get 

V. 11 

V, 21 

ir.liL 

Op '(3-1)' 
1̂2 

V (73) 

where represents the edge voltages of v-1 edges forming 

a tree of G and represents the edge voltages of the 

remaining e - (v-1.) edges. 

If. Equation 73 is solved for we get 

(74) 

Which shows that the v-1 cut-set voltages are related to v-1 

edge voltages by E'. This provides a much easier method of 

solving for the cut-set voltages since E' is relatively easy 

to form. As shown by Equation JO, E represents those row 

operations which will transform the first v-1 columns (after 

rearranging column ordering if necessary) of Q into a unit 

matrix as 

EQ]_i = U. (75) 

Also 

or 

s'Qli = u 

QilB. = u 

and for E' we get 

E' = (̂ J)' . 

(76) 

(77) 

(78) 
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This method of solving for E' requires us to identify a tree 

in order to form the columns of from Q. As the rank of G 

increases, the labor involved in finding E' may not be 

justified and Equation 6$ may be a more direct method of 

solving for the cut-set voltage variables. 

Another way of solving for the cut-set voltage variables 

results from premultiplying Equation 35 by a matrix N (not 

necessarily non-singular) as 

NV = NQ'Vq . (79) 

such that in any row of NQ' a single plus one appears in 

column i (and zeroes in the other columns) of NQ'. Thus, the 

voltage-variable of cut-set i has been determined in terms of 

a combination of edge voltages. Therefore, if we can combine 

rows of Q' such that a single plus one appears in column i 

and zeroes appear in the other columns of the combination 

then we have found V_ in terms of the voltages of the edges 
• î 

or rows of Q' that were combined. Equivalently, if can 

combine columns of Q such that a single plus one appears in 

row i and zeroes appear in the other rows of the combination 

then we have found V in terms of the voltages of the edges 
î 

or columns of Q that were combined. This method has an 

advantage over the method given by Equation 74 since we do 

not need to choose a tree of G. By Theorem 6 we know that a 

cut-set may be deleted from Q with the remaining rows of Q 

still forming a cut-set matrix if the voltage variable of that 
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cut-set is a node-pair voltage. Therefore, by the above 

method we can determine the voltage variable of any cut-set 

without completely solving for N of Equation 79. However, 

the cut-set voltage variable may be a combination of voltages 

of a set of edges which is not minimal. The edges of a 

circuit may be included as a subset and hence this subset 

of voltages will sum to zero by Kirchhoff's Voltage Law. 

It may be possible to use this scheme to devise an algorithm 

whereby a minimal set of edges are chosen such that we" could 

find the edges of a tree for any given cut-set matrix but 

this will not be explored. 

As an example let us use the graph of Figure 7 with a 

cut-set matrix given by Equation 58. Let us choose edges 1, 

2, and 4 since they have a single 1 per column and columns 3 

and 6 to complete our first v-1 columns of Q. The reason for 

not choosing edge 5 is apparent since the first 5 columns of 

Q do not have rank 5 (a row of zeroes is present). Equi-

yalently, we note that edges 1 through 5 do not form a tree 

of the graph shown in Figure 7. The matrix E' is easily 

formed for this choice as 

E '  =  

1 0 0 0 0 
Ô -1 0 0 0 

- 1 0  1 0  0  
0  0  0 - 1 0  
1 0  0  1 - 1  

(80) 

and when substituted into Equation 74 the result is 
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Figure 9. Complete graph of Figure 7 
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which again agrees with Equation 8l. However E' of Equation 

83 is more difficult to form than E' of Equation 80. 

As one final example let us find the cut-set voltage 

variables of Figure 10 by using Equation 79. The cut-set 

matrix is given in Equation 90. If we add column 1 and 

column 5 and divide by two'we get a single one in row 1 of 

this combination so 

' (85) 

and if we subtract column 5 from column 1 and divide by two 

we get a single one in row 3 of this combination so 

V. - V. 
. (86) 

We also notice that column 7 contains a single minus one in 

row 4 so 

% = - (87) 

To find V let us choose column 4 (any column with a non-zero 

element in row 2 would be all right) and write an equation as 

4̂ = -̂ 2 - ̂ cî3 + \ (S8) 

and when Equations 86 and 87 are substituted into Equation 88 

we- get . 

Vqg = - 2" - ̂ 4 + 2- - ̂ 7 ' _ (89) 

This section merely points out some of the short-cuts 

which may be used to determine the cut-set voltage variables 

in terms of the edge voltages. The one point to remember is 
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I 

\ / 

5 

Figure 10. Directed graph with four independent 
cut-sets 
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that we have e equations (columns or edges) and v-1 (v-1 < e) 

unknowns (rows or cut-sets) so as in any system of equations 

there may be some sets of equations which yield a solution 

with less effort than another set. 

b. Cut-set matrices of non̂ oriented graphs This 

section will be devoted to several examples to show that if 

we change all minus ones of Q to plus ones then Q may not be 

proper for the non-oriented graph. Likewise, Q may not be a 

cut-set matrix of a directed graph but if all minus ones of 

Q are replaced by plus.ones then Q may be a cut-set matrix of 

a non-oriented graph. 

As established By Seshu and Reed (13)j a set of cut-sets 

that are independent over the real field may not be independent 

over the field mod 2 when orientations are removed. 

As an example let us consider the directed graph of 

Figure 10 with four independent cut-sets as illustrated. If 

we form Q, the result is 

1̂ 2 3 4 5 6 7 8 
1 1 0 1 0 1 1 0 0 
2 0 1 1 -1 0 -1 0 1 
3 1 -1 0 -1 -1 0 0 1 
4 0 0 0 1 0 1 -1 0 

and since edge 7 appears in only cut-set four, cut-set four 

may be deleted and the remaining rows still form a cut­

set matrix describing the graph Illustrated in Figure 11. 

However, if we replace all minus ones by plus o'nes in Q,_2ĵ  

we get for the corresponding mod 2 matrix of the non-oriented 

graph. 
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I 

Figure 11. Graph of Figure 10 with cut-set 
deleted 

four 
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Figure 12. Directed graph with four different 
independent cut-sets 
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/4 

Figure 13. Non-oriented igraph described by Equation 94 



www.manaraa.com

56 

Prom Equation 40 

V =  ̂ (96) 
q q 

and when Equation 96 is substituted into Equation 95 the edge' 

currents are 

I = [Y - YQ̂  (QyYQ̂ )-lQyY]% J. (97) ' 

The edge currents after the transformation are given by 

= Va - Ja = Wq, - ' <58) 
a 

where the source currents J are the same as the source 
& 

currents J, the element admittance matrix Y_ is now Y , a y 

the cut set matrix after the transformation is since 

the cut-sets ̂  have been deleted, and the cut-set voltage 

variables have all been reduced to zero except V so 
q̂ 

V = V . Therefore, it is obvious that the edge currents I 
â q̂ 

given by Equation 97 are the same as those given by Equation 

98. Thus, the edge currents remain invariant under the 

transformation. 

The general element admittance matrix will be developed 

as needed in the example that follows. Let us begin with a 

simple network and its graph as illustrated in Figure l4 

and Figure 15 respectively. If we choose cut-sets such that 

each source edge (edge 6 in the example) is included in only 

one cut-set then we may reduce the network to an equivalent 

network without disturbing the sources. If we direct the . 

edges to agree with the first cut-set to be deleted we get 



www.manaraa.com

57 

•3* 

J|a 
5zy 

59.9 

Figure l4. A network with corresponding element currents 
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X 

h e  

Figure 15. Graph of network illustrated in Figure l4 
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h-

Figure 16. Graph of network after deletion of cut-set 3 
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first s rows and columns of Y . If the orientation of the 
1̂ 

edges of do not result in plus ones in the s columns then 

the orientations of these edges (where a minus one appears) 

may be reversed and the corresponding sign changes made in 

Y . This is not necessary when making a transformation but 
1̂ 

is convenient in terms of deriving a general element 

admittance matrix. 

Let 

where 
yi 

Fij = y 

= [y. i ] 
ij (103) 

(104) 

(105) 

and form the terms of Equation 102. The term 

"ij = 

and since this is a scalar its inverse is its reciprocal so 

we may bring together and combine the premultiplier Y Qj 
yi Tg 

and the postmultiplier Q Y 
^2^1-

Z Yii 

[z yjLi 2 7^2 ^ (106) 

as 

2 7^1 

z'y ei 

where S is the summation defined by Equation 23 (2 = E ). 
1=1 

This gives a general expression for Y as 
2̂ 
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'11 

y 
21 

'el 

^11^11 

1̂2̂ 11 
Z'Flj 

îê il 
Z'̂ ij 

yi2-

"̂ 22" 

6̂2" 

1̂1̂ 12 

'̂̂ ij 

1̂2̂ 12 
Z'̂ lj 

l̂e-

yo-j -

z'rij 

l̂â ie 
21 S'y, 

êe~ 

ij 

l̂ê le 

Equation 107 may be used at each step to find the elemeni 

admittance matrix in terms of the s edges of the cut-set, 

Equation 107 reduces to Equation 26 when Y is a diagdns 
1̂ 

matrix. It may be more convenient to express Equation IC 

as the difference between two matrices such that 

1 
= Z'y. 

IJ 
[Yl - Yg] ( 

where 

and 

2̂ ~ 

1̂1̂ 11 1̂1̂ 12 • 

1̂2̂ 11 1̂2̂ 12 • 1̂2̂ 16 

1̂6̂ 12 • • • 

At this time let us interpret the various terms of Yy 

Given the element admittance matrix Y ̂  ̂ then since S'y, . 
y2 

the sum of all elements in the first s columns and s ̂ ows 

Yy , we can find Ŷ  very easily. The general term 

is the sum of the first s elements in column k of Y„ . 
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Therefore, may be easily formed and the difference Ŷ -Yg 

yields Y . 
2̂ . 

Now returning to the example, let us delete cut-set 2 

so we will arrange Q as 
1̂ 

1 

2 

13 5 2 
1 0  0  1  

4 6. 
0 1 

1 1 1 0  0  0  

s 
(111) 

where edge orientation of cut-set Q was chosen to produce 

s plus ones in the first s columns. In general it is not 

possible to choose all cut-sets to fit the general form as 

described and it is necessary to make corresponding sign 

changes in the element admittance matrix. The element 

admittance matrix may be arranged in the proper form to apply 

Equation 107 by ordering rows and columns of Equation 100 to 

agree with the order of edges chosen in Equation 111. The 

element admittance matrix Y then becomes 
Y-\ 

and since 

 ̂ 1 3 5 2 4 6 
1 r  0 . 9  - 0 . 3  0  - 0 . 2  -0.4 0  
3  - 0 . 3  2 . 1  0  -0.6 - 1 . 2  0  
5 0  0  5 0  0  0  
2  - 0 . 2  - 0 . 6  0  1 . 6  - 0 . 8  0  
4 -0.4 - 1 . 2  0  - 0 . 8  2.4 0  
6  0  0  0  0  0  6  

(112) 

= 7.4 

we get 
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\ = 

The matrix Yg is 

2̂ = 

6.66 -2.22 0 -1.48 -2.96 0 
-2.22 15.54 0 -4.44 -8.88 0 

0 0 37.0 0 0 0  
-1.48 -4.44 0 11.84 -5 .92 0 
-2.96 -8.88 0 -5.92 17.76 0 
0  0 D 0 0 44.4 

and 

0.36 1 .  08 3 -0 .48 -0 .96 0 
1 .08 3. 24 9 -1  .44 -2 .88 0 
3 9 25 -4 -8  0 

-0.48 -1 .  44 -4 0. 64 1.28 0 
-0.96 -2.  88 -8  1.  28 2.56 0 
0  .0 0 0 0 . 0  J 

^ 1  3 5 2 4 6 
1 r 6.3 -3.3 -3 -1  -2  0 
3 -3 .3  12.3 • -9 -3 -6  0 

- • 5 -3  -9 12 4 8 0 
^ 2 -1 -3 4 11.  2  -7 .2  0 

4 -2 -6  8 -7. 2 15.2 0 
6 0 0 0 0 0 44.4 

(113) 

(114) 

(115) 

Therefore, Equation 115 is the element admittance matrix of 

a network whose graph is described by Q of Equation 111 and 

illustrated in Figure 17. 

Let us now see how the edge currents of the network 

corresponding to Figure 17 agree with those values given in 

Figure l4. The equation describing the network is 

where 

and 

Xr 
= J. 

Equation ll6 may be written as 

(117) 

(118) 
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Figure 17. Graph of network after deletion of .cut-sets 
2 and 3 
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1̂3 (119) 

59.9 which gives an input admittance of îhos between terminals 

1 and 2 of Figure 17 which is the input admittance "between 

the corresponding terminals in Figure l4. The edge voltages 

V after the transformation are a 

Va= 

3̂ 

'̂ 13' 
0 . • 

5̂ 
0 

2̂ '13 

0 

6̂ 

(120) 

since edges 1, 2, and 6 are in parallel and edges 3, 4, and 

5 form self loQps as illustrated in Figure 17. This gives for 

the edge currents (as given by Equation $8) 

= 

-

5.3 0 
li -6.3 0 

1 0 
= 7̂  10.2 

-9.2 \3-
0 
0 

(121)  

4 44.4 
L̂ i 

or in terms of (from Equation 119) 

1 
59.9 

5.3 
-6.3 
1.0 
10.2 
-9.2 
44.4 

1̂̂  " 

0 
0 
b 
0 
0 

(122) 

which agrees with those values given in Figure l4. 
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Therefore, this example demonstrates the previously 

established invariance of edge currents and we have reduced 

the original graph that was shown in Figure 15 to an equivalent 

graph that is illustrated in Figure 17. 
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IV. SUGGESTED RESEARCH PROBLEMS 

Several research problems can be suggested as a result 

of this investigation. (a) If one row i is deleted from a 

cut-set matrix Q, then the remaining rows form a cut-set 

matrix Q_̂  if the cut-set deleted satisfies the sufficient ; 

conditions of Theorem 7. A counterexample is given to show 

that these conditions are not necessary conditions. It would 

be desirable to find the necessary and sufficient conditions 

for the existence of this cut-set matrix, preferably in terms 

of readily recognized graph properties. In the counter­

example given, the graph represented by of Equation 65 

does not appear to be related to the original graph illustrated 

in Figure J. If edge 10 is added to Figure 7 from vertex 1 

to vertex 2 then Q _ becomes 

1 2 3 4 5 
1 1  0  1  0  0  

o  2 0  - 1  0  0  0  
-̂3~ 4 0 .0 0-1-1 

5 0 0 0 0 0  

which is not a cut-set matrix. Therefore, when an edge is 

added, Q,_g is no longer a cut-set matrix. This leads one to 

believe that the sufficient conditions may also be necessary 

conditions for a complete graph. Adding different columns 

(adding more edges to the graph) to the cut-set matrix may 

give some insight into how the properties of the graph change 

as we.add edges. 

1 
0 
-1 

-1 

7 8 
-1 

0 
0 
1 

1 
-1 

0 
-1 

0 
1 
0 
•1 

10 

1 
-1 

-1 

-1 

(123)  
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(b) In section IIIB2c, an example was given where a 

network with one source was reduced to an equivalent network 

with an element admittance matrix given by Equation 115. 

The general element admittance matrix (with proper orienta­

tion of edges) is given by Equation 107 as each cut-set is 

deleted. If this procedure could be reversed, then it should 

be possible to use this method in the reverse fashion for 

network synthesis. For example, given an element admittance 

matrix, we should be able to add one cut-set at a time until 

we have constructed a cut-set matrix Q and a diagonal 

admittance matrix which will describe the network. 
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V. SUMMARY 

This investigation provides a new approach to transforma­

tions in terms of graph theory. This approach is used to 

provide a new derivation for the familiar star-to-mesh 

transformation in terms of the incidence matrix A of the 

graph and is then extended to a more general cut-set to mesh 

transformation using the cut-set matrix Q. 

In the last method a cut-set is deleted from Q (the 

edges of the cut-set are transformed) and the matrix of the 

remaining rows of Q, if it forms a cut-set matrix, defines an 

equivalent graph described by a transformed element admittance 

matrix Ŷ . The necessary and sufficient conditions are given 

for a transformation to be physically realizable with passive 

elements. If a transformation is not physically realizable, 

then the sufficient conditions are given for a cut-set matrix 

with one row deleted to be a cut-set matrix. In this case a 

transformation is hypothetically realized with mutual admit­

tances. These conditions depend upon whether tl& voltage 

variable of the cut-set deleted is a node-pair voltage 

variable. A method is given whereby the cut-set voltage 

variables can be determined in terms of node-pair voltages. 

An example is given where successive transformations 

reduce a graph to an equivalent graph. The interpretation 

of these steps and of the structure of the graph and the 

element admittance matrix may be useful in network 
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synthesis as well as network analysis. It might be possible 

to devise a synthesis procedure whereby we approach the 

analysis problem in the reverse order and hence determine a 

network for a given admittance matrix. 
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